Comprehensive Evaluation Of Appearance-Based Techniques For Palmprint Features Extraction Using Probabilistic Neural Network, Cosine Measures And Euclidean Distance Classifiers
dc.contributor.author | Akande Oluwatobi Noah | |
dc.contributor.author | Abikoye O. C | |
dc.contributor.author | Adeyemo I. A | |
dc.contributor.author | Ogundokun R. O | |
dc.contributor.author | Aro T. O | |
dc.date.accessioned | 2025-08-08T12:05:14Z | |
dc.date.issued | 2018-08-08 | |
dc.description.abstract | Most biometric systems work by comparing features extracted from a query biometric trait with those extracted from a stored biometric trait. Therefore, to a great extent, the accuracy of any biometric system is dependent on the effectiveness of its features extraction stage. With an intention to establish a suitable appearance based features extraction technique, an independent comparative study of Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) algorithms for palmprint features extraction is reported in this article. Euclidean distance, Probabilistic Neural Network (PNN) and cosine measures were used as classifiers. Results obtained revealed that cosine metrics is preferable for ICA features extraction while PNN is preferable for LDA features extraction. Both PNN and Euclidean distance yielded a better recognition rate for PCA. However, ICA yielded the best recognition rate in terms of FAR and FRR followed by LDA then PCA | |
dc.identifier.citation | Akande Oluwatobi Noah et al.(2018). Comprehensive Evaluation Of Appearance-Based Techniques For Palmprint Features Extraction Using Probabilistic Neural Network, Cosine Measures And Euclidean Distance Classifiers. University Of Pitesti Scientific Bulletin: Electronics And Computers Science, 18(1). | |
dc.identifier.issn | 1453 – 1119 | |
dc.identifier.uri | https://repository.nileuniversity.edu.ng/handle/123456789/600 | |
dc.language.iso | en | |
dc.publisher | UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN | |
dc.relation.ispartofseries | 18; 1 | |
dc.subject | Cosine Measures | |
dc.subject | Euclidean Distance | |
dc.subject | Independent Component Analysis | |
dc.subject | Linear Discriminant Analysis | |
dc.subject | Palmprint Feature Extraction | |
dc.subject | Principal Component Analysis | |
dc.subject | Probabilistic Neural Network | |
dc.title | Comprehensive Evaluation Of Appearance-Based Techniques For Palmprint Features Extraction Using Probabilistic Neural Network, Cosine Measures And Euclidean Distance Classifiers | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- COMPREHENSIVE EVALUATION OF APPEARANCE-BASED TECHNIQUES FOR PALMPRINT FEATURES EXTRACTION USING PROBALISTIC NEURAL NETWORK.pdf
- Size:
- 1.04 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: