Improving the Accuracy of Animal Species Classification in Camera Trap Images Using Transfer Learning
No Thumbnail Available
Date
2024-02-02
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
International Conference on Artificial Intelligence, Computer, Data Sciences and Application
Abstract
Understanding biodiversity, monitoring endangered species, and estimating the possible effect of climate change on particular regions all rely on animal species identification. Closed-circuit television (CCTV) cameras, which can collect huge volumes of video data, are an excellent environmental monitoring tool. However, manually evaluating these massive datasets is time-consuming, difficult, and expensive, emphasizing the need for automated ecological analysis.Deep learning models have transformed computer vision, handling problems such as object and species detection. Their cutting-edge performance qualifies them for this application. The purpose of this work was to create and test machine learning models for distinguishing diverse animal species using camera trap images. On VGG19, GoogLeNet (InceptionV3), ResNet50, and DenseNet121, we used transfer learning. The best multi- classification accuracy was attained by GoogLeNet (87%), followed by ResNet50 (83%), DenseNet (81%), and VGG19 (53%). This evidence suggests that transfer learning outperforms training models from scratch for this task.
Description
Keywords
ML, DL, CCTV, Image Classification, CNN
Citation
Boukar, Moussa Mahamat et.al. (2024). Improving the Accuracy of Animal Species Classification in Camera Trap Images Using Transfer Learning. Proc. of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2024)