Research Articles in Computer Science
Permanent URI for this collectionhttps://repository.nileuniversity.edu.ng/handle/123456789/50
Browse
Search Results
Item Machine learning techniques versus classical statistics in strength predictions of eco-friendly masonry units(IEEE, 2021-02-02) Assia Aboubakar Mahamat; Moussa Mahamat BoukarEarth-based materials demonstrated promising characteristics in the development of eco-friendly, low cost and sustainable construction materials. However, their unconventional utilization in construction makes the assessment of their properties very difficult and inaccurate because they are assessed based on conventional materials procedures. Hence, the properties of earth-based materials are not well understood. The assessment of earth-based materials properties for sustainable construction is time-consuming, expensive, and inaccurate. To obtain more accurate properties, an artificial neural network and statistical linear regression analysis were used to predict the compressive strength of alkali-activated soil. Statistical linear regression analysis was carried out to compare the efficiency of the machine learning technique with the classical statistics model. Parameters such as Si/Al, activator level, curing temperature, water absorption, and weight were used as input parameters to predict the target variable. The coefficient of determination was used to examine the performance of the models. The results depict that artificial neural network outperformed statistical linear regression analysis with R2=0.74, RMSE=0.119 and R2 =0.48, RMSE=0.466 respectively. This indicates that statistical linear regression analysis is inefficient for prediction of the strength in alkali activated soilsItem Machine Learning Approaches for Prediction of the Compressive Strength of Alkali Activated Termite Mound Soil(MDPI, 2021-05-22) Moussa Mahamat Boukar; Nurudeen M. IbrahimEarth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE