Research Articles in Computer Science
Permanent URI for this collectionhttps://repository.nileuniversity.edu.ng/handle/123456789/50
Browse
Item A Machine Learning Led Investigation Predicting the Thermos‑mechanical Properties of Novel Waste‑based Composite in Construction(Waste and Biomass Valorization, 2024-05-04) Assia Aboubakar Mahamat; Moussa Mahamat Boukar; Ifeyinwa Ijeoma Obianyo; Nurudeen M. IbrahimThe study explores the potential of machine learning (ML) in predicting the thermal and mechanical properties of earth-based composites reinforced with natural Borassus fruit fiber. The limited availability of large datasets for accurate predictions is a challenge in material science research, which this study addresses. The authors collected data on thermal conductivity, compressive and flexural strength through experiments and employed four ML techniques suitable for small datasets: linear regression (LR), random forest (RF), decision tree regressor (DTR), and gradient boosting (GB). Evaluation metrics were used to assess the performance of the ML techniques. Linear regression emerged as the most efficient, exhibiting significantly lower error values compared to the others (e.g., RMSE of 0.066 for thermal conductivity, 0.119 for compressive strength, and 0.04 for flexural strength), followed by random forest and decision tree. However, gradient boosting showed relatively poor predictive accuracy. This study demonstrates the successful application of ML for predicting the properties of earth-based composites with limited data, which could significantly reduce the cost and time associated with developing new building materials and products. Manufacturers can gain a competitive edge by using ML to streamline material development, leading to lower costs, faster innovation, and the creation of more environmentally friendly building materials for a greener construction sector.Item Decision Tree Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber(MDPI, 2024-08-26) Moussa Mahamat Boukar; Ifeyinwa Ijeoma ObianyoThis research focuses on the environmental-friendly production of Borassus fruit fibers (BNF), its characterization, and hygroscopic properties determination via Dynamic Vapor Sorption (DVS). The experimental results obtained from the hygroscopic behavior analysis were used to create a primary dataset to train and test Decision Tree Regression (DTR) and Gradient Boosting Regressor (GBR) models. The created primary dataset comprised 294 observations, from which 80% were used to train the models, and the remaining 20% were used for the testing of the two models. The models exhibited high accuracy, easy interpretability on the small-size dataset, and flexibility with regards to the nature of the relationship between the input and output variable. Both models successfully predicted the hygroscopic behavior with the Gradient Boosting Regressor outperforming Decision Tree Regression by indicating values of 0.012, 0.109, 0.059, and 0.999 for MSE, RMSE, MAE, and R2, respectively, during the desorption of the BNF, and values of 0.012, 0.109, 0.059, and 0.999 for MSE, RMSE, MAE, and R2, respectively, during the desorption of the BNF. This suggests that the Gradient Boosting Regressor illustrated the maximum accuracy. The outcomes can be utilized to provide an alternative for traditional methods, which can often be costly and time-consuming by improving the engineering properties of BNF. The models can be used in the construction sector to lower costs as they are able to pinpoint elements influencing the characteristics for specific applications to grasp its various properties through the prediction of its hygroscopic properties.