Research Articles in Mechanical Engineering

Permanent URI for this collectionhttps://repository.nileuniversity.edu.ng/handle/123456789/130

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials
    (The University of Edinburgh, 2022-05-20) Emmanuel I. Epelle; Kwaghtaver S. Desongu; Winifred Obande; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Jude A. Okolie; Burcu Gunes
    Nanomaterials are beginning to play an essential role in addressing the challenges associated with hydrogen production and storage. The outstanding physicochemical properties of nanomaterials suggest their applications in almost all technological breakthroughs ranging from catalysis, metal-organic framework, complex hydrides, etc. This study outlines the applications of nanomaterials in hydrogen production (considering both thermochemical, biological, and water splitting methods) and storage. Recent advances in renewable hydrogen production methods are elucidated along with a comparison of different nanomaterials used to enhance renewable hydrogen production. Additionally, nanomaterials for solid-state hydrogen storage are reviewed. The characteristics of various nanomaterials for hydrogen storage are compared. Some nanomaterials discussed include carbon nanotubes, activated carbon, metal-doped carbon-based nanomaterials, metal-organic frameworks. Other materials such as complex hydrides and clathrates are outlined. Finally, future research perspectives related to the application of nanomaterials for hydrogen production and storage are discussed.
  • Item
    Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials and Value-Added Chemicals
    (MDPI, 2023-03-06) Jude A. Okolie; Toheeb Jimoh; Olugbenga Akande; Patrick U. Okoye; Chukwuma C. Ogbaga; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Fatih Güleç; Andrew Nosakhare Amenaghawon
    Human and animal waste, including waste products originating from human or animal digestive systems such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and animal waste often cause negative impacts on human health through contamination of the terrestrial environment, soil, and water bodies. Therefore, it is necessary to convert these wastes into useful resources to mitigate their adverse environmental effect. The present study provides an overview and research progress of different thermochemical and biological conversion pathways for the transformation of human- and animal-derived waste into valuable resources. The physicochemical properties of human and animal waste are meticulously discussed as well as nutrient recovery strategies. In addition, a bibliometric analysis is provided to identify the trends in research and knowledge gaps. The results reveal that the U.S.A, China and England are the dominant countries in the research areas related to resource recovery from human or animal waste. In addition, researchers from the University of Illinois, the University of California Davis, the Chinese Academy of Science and Zhejiang University are front runners in research related to these areas. Future research should be centred on developing technologies for the on-site recovery of resources, exploring integrated resource recovery pathways, and exploring different safe waste processing methods.