Research Articles in Mechanical Engineering
Permanent URI for this collectionhttps://repository.nileuniversity.edu.ng/handle/123456789/130
Browse
Item A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials(The University of Edinburgh, 2022-05-20) Emmanuel I. Epelle; Kwaghtaver S. Desongu; Winifred Obande; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Jude A. Okolie; Burcu GunesNanomaterials are beginning to play an essential role in addressing the challenges associated with hydrogen production and storage. The outstanding physicochemical properties of nanomaterials suggest their applications in almost all technological breakthroughs ranging from catalysis, metal-organic framework, complex hydrides, etc. This study outlines the applications of nanomaterials in hydrogen production (considering both thermochemical, biological, and water splitting methods) and storage. Recent advances in renewable hydrogen production methods are elucidated along with a comparison of different nanomaterials used to enhance renewable hydrogen production. Additionally, nanomaterials for solid-state hydrogen storage are reviewed. The characteristics of various nanomaterials for hydrogen storage are compared. Some nanomaterials discussed include carbon nanotubes, activated carbon, metal-doped carbon-based nanomaterials, metal-organic frameworks. Other materials such as complex hydrides and clathrates are outlined. Finally, future research perspectives related to the application of nanomaterials for hydrogen production and storage are discussed.Item A comprehensive review on the similarity and disparity of torrefied biomass and coal properties(Elsevier, 2024-05-09) Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Stephen S. Emmanuel; Moses O. Fajobi; Praise Nwachukwu; Ademidun A. Adesibikan; Jamiu Kolawole Odusote; Emmanuel O. Adeyemi; Oluwaseyi M. Abioye; Jude A. OkolieThe use of coal for energy generation is facing serious scrutiny because of environmental concerns. As a result, there is a growing global interest in biomass, a renewable and readily available energy source. However, the utilization of biomass comes with significant drawbacks, including its heterogeneity, low bulk density, and calorific value. Biomass also has a low energy content, high moisture, poor grindability, and high volatile matter, which affect its handling, bulk transportation, and storage. Torrefaction technology has been employed in previous works to improve the properties of biomass for subsequent handling and transportation and for low-cost energy generation. Since coal is a promising precursor for energy generation, it is imperative to compare the physicochemical properties of coal with that of torrefied biomass. Therefore, this study aims to conduct a comprehensive comparison between various grades of coal and torrefied biomass. The review revealed that torrefied biomass could replace coal, as its properties are similar to those of coal, except for high-grade coals. The proximate and ultimate analyses of coals (lignite and bituminous) were found to be comparable to various torrefied biomass materials. The fuel ratio (0.5–2.0), and higher heating values (16,100–19,000 kJ/kg) of coal and torrefied biomass were within the range useful for coal-fired plants. Additionally, ash analyses, ash fusion temperature, hygroscopic tendency, functional group study, and microstructural comparison were reviewed in this study. The results from various studies have shown close similarities with only small disimilarities in the fuel properties between coal and torrefied biomass. Therefore, torrefied biomass is proposed as a complimentary feedstock to coal in various applications.Item A COOLING POTENTIAL OF FORMULATED BIO-QUENCHANT OILS ON A CAST ALUMINIUM ALLOY MATERIAL(Journal of Chemical Technology and Metallurgy,, 2020-02-02) Adebayo Surajudeen Adekunle; Adekunle Akanni Adeleke; Tajudeen Adelani Gbadamosi; Friday O. Nwosu; Jamiu Kolawole Odusote; Peter Olorunleke Omoniyi; Tajudeen O. Popoola; Kazeem Adekunle AdebiyiThe biodegradable vegetable oil based quenchants can serve as cooling media alternative to that of the toxic non-biodegradable petroleum based mineral oil in a heat treatment of aluminium and its alloy. 70 vol. % of edible vegetable oil are blended with 30 vol. % of Jatropha oil to form bio-quenchant oils for Aluminium (Al)-alloy probe treated at 500oC and soaked for 15 min in a muffle furnace. The cooling potential properties such as the cooling rate, the heat transfer coefficient, the Grossman quench severity and the biot number are investigated. The results obtained show that the blended bleached (BB) melon oil provides the highest cooling rate of 49.30oC s-1, while the blended raw (BR) palm oil ensures the lowest cooling rate of 18.45oCs-1. Heat transfer coefficients of 704.6 Wm-2K-1, 432.3 Wm-2K-1, and 394.4 Wm-2K-1 are exhibited by the blended bleached melon oil, the blended raw melon oil and the blended bleached groundnut oil, respectively. They are found higher than that of a petroleum based mineral oil, which amounts to 68.7 Wm-2K-1. The lowest heat transfer coefficient of 272.11 Wm-2K-1 is obtained in case of using a blended raw palm oil. The quench severity of the blended bleached melon oil, the blended raw melon oil and the blended raw groundnut oil refers to a Grossman H-factor of 1.01 m-1, 0.78 m-1, and 0.67 m-1, respectively. The latter values are higher than that obtained in case of a blended raw palm oil, which is equal to 0.37 m-1. However, the heat flow parameters obtained reveal that the blended bleached and the blended raw melon and groundnut oil can be characterized as fast quenching oils, while the blended bleached and the blended raw palm oil can be characterized as medium quenching oils of results comparable to and even better than those of the industrial petroleum based mineral oil.Item A Model-Based Design of an Electric Kettle for Nigerian Households(IEEE, 2024-08-15) Nwachukwu Praise; Ibikunle Rotimi; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Seun Jesuloluwa; Onyemachukwu ChidinduElectric kettles, essential in Nigerian households is the focus of this paper. It aims to develop and analyse discrete-time and continuous-time models using engineering software. First, a Computer-Aided Design (CAD) model is developed, followed by the comprehensive analysis of the steady-state thermal properties of the model using finite element analysis (FEA). Subsequently, a physical model, with three sub-systems, is developed and subjected to simulation. This study examines both models, scrutinizes the effect of alterations in thermal parameters, and conducts a comparative analysis with an actual kettle. The findings, offer valuable insights into the dynamics of the electric kettle and provide intuitive suggestions for enhancing its efficiency and usage.Item A Review of Failure Analyses in Engineering: Causes, Effects and Possible Solutions(IEEE, 2023-05-22) Temitayo Samson Ogedengbe; Ikumapayi Omolayo Michael; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Adeiza Avidime SamuelFailure analysis is centred on finding the reasons why machine parts lose functioning in an unintended way. In order to identify the damage's primary cause and ensure that it doesn't happen again, failure analysis investigation is necessary in determining the maximum amount of a specific type of load that may be applied to a structure without producing failure. It is frequently of interest throughout the design phase for engineering constructions. This provides the factor of safety against machine failure. This study is aimed at a review of failure analysis in recent times and as such 51 articles were reviewed, most of which were published no later than 2017. In this study, we critically examined and endorsed the idea of using failure as a methodological concept to foster creativity. Engineering-related operational methods, such as causes of failure, types of failure, possibility thinking, and reflexivity following failure, aided in reinforcing this educational study. We also made assumptions about potential design components for a technologically sophisticated failure assessment.Item A Review of Rare Earth Ion-Doped Glasses: Physical, Optical, and Photoluminescence Properties(Trends in Sciences, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. OkolieResearchers worldwide have shown significant interest in doping glasses with rare-earth ions. This is particularly intriguing because rare-earth ions are extensively used to enhance the optical properties of host glasses, capitalizing on their unique spectroscopic characteristics due to optical transitions within the intra-4f shell. An in-depth review was conducted on various glass fabrication methods, such as sputtering, solgel, chemical vapor deposition, ion exchange, and direct melt quenching. The study emphasized the physical, optical, and photoluminescence properties of glasses made from glass formers co-doped with rare earth ions. Understanding the interrelationship between these properties is crucial for optimizing material performance across various technological applications. The research highlights the broad applicability of rare-earth-doped glasses in fields like white light emission, photonic devices, solid-state lasers, optical fiber communication, and biomedical applicationsItem A Review on Biomass Briquettes as Alternative and Renewable Fuels(IEEE, 2023-02-28) Adekunle Akanni Adeleke; Petrus Nzerem; Ayuba Salihu; Esther Nneka Anosike-Francis; Adebayo Isaac Olosho; Etowa Emmanuel Obasesam; Sakeenah Sadiq Abubakar; Dakut John Yerima; Khaleel JakadaThe adverse effects of the combustion of fossil fuels on humanity and the environment have made it vital to discover eco-friendly, sustainable, and renewable energy alternatives. Globally, there exists loose biomass, which is agricultural and cultural waste that can be utilised to produce briquettes, a type of solid fuel. Briquettes have played a significant role in the energy generation economies of both developing and developed nations. The production of briquettes involves a series of activities, including collection, transportation, storage, processing, and densification of the feedstock to meet predetermined quality parameters. Rice husk, corn stalk, wheat straw, cassava stalk, groundnut shell, olive husk, palm kernel shell and coconut shell are among the feedstocks for briquettes. In order to increase the cohesive strength of the briquettes, binders are incorporated during the densification process. This study aims to investigate the current state of research regarding the utilisation of biomass-derived briquettes as a viable substitute for traditional fuels. To achieve this objective, a comprehensive analysis of recent literature published between 2017 and 2023 is conducted. This study encompasses essential subtopics, including the accessibility of biomass, the selection of binders, the parameters of the briquette process, and the equipment used for briquetting.Item A Review on Extraction of Rare Earth Elements (REEs) From Coal Using Acid Leaching(IEEE, 2023-11-01) Rabiatu Adamu Saleh; Abdullahi Gimba; Adekunle Akanni Adeleke; Adebayo Isaac Olosho; Taofeek Sunmonu; Petrus Nzerem; Ayuba Salihu; Chinomso OdimbaCoal has become a feasible source of rare earth elements (REEs; the 14 stable lanthanides, scandium, and yttrium). It is believed to contain significant amounts of rare earth elements, making it a primary source of REEs which serves as basic raw materials in the production of renewable energy. This review established the feasibility of recovering REEs from coal using acid leaching method. It discusses; the sourcing of REEs from coal, the applications of REEs and acid leaching as an effective hydrometallurgical method for extracting REEs from coal. It also examined the efficiency of methods used by other researchers in extracting REEs from coal. However, the potential of acid leaching as a solution to issues such as: difficult leaching conditions, low recovery and the use of expensive chemicals has not been fully investigated. For a better choice in the extraction of REEs from coal, more study and review are necessary.Item A review on primary synthesis and secondary treatment of aluminium matrix composites(Taylor and Francis, 2020-10-13) T. A. Orhadahwe; O. O. Ajide; Adekunle Akanni Adeleke; Peter Pelumi IkubanniIn this paper, the primary synthesis and secondary treatment of Aluminium matrix composites (AMCs) has been reviewed. The renewed quest for component materials with high strength-to-weight ratio, unusual and superlative combination of properties for applications in automotive, aerospace, marine and warfare armoury manufacturing industries has increased the versatility potential of aluminium alloy-based composites. Several categories (synthetic and agro-based ceramics) of reinforcement materials for aluminium composite are discussed. The manufacturing/fabrication techniques which could be solid phase (powder metallurgy and rapid prototyping or 3 D printing method) or liquid phase (casting and pressure infiltration) methods are discussed in this review work. Secondary treatment such as heat treatment, forging and other thermomechanical treatments which improves the properties of as-synthesized composites are also discussed. A review synopsis of recent studies provides opportunity for concise but a more robust understanding of potential benefits and detrimental effects associated with the use of various primary synthesis routes and secondary treatment for manufacturing of ceramic reinforced AMCs. Despite the laudable research efforts that have been made towards development and enhancement of the properties of AMCs, this review work revealed that literature is very sparse on synergetic adoption of multi-synthesis route and multi-approach secondary treatment for producing AMCs. Sequel to the aforementioned unexplored research concept, some lacunae are identified and suggested for further elaborations and study.Item A review on the use of carboxymethyl cellulose in oil and gas field operations(Cellulose, 2023-09-17) Hauwa A. Rasheed; Adekunle Akanni Adeleke; Petrus Nzerem; Olusegun Ajayi; Peter Pelumi Ikubanni; Asmau M. YahyaThe purpose of this review is to highlight the applications of carboxymethyl cellulose (CMC) in oil and gas industries. CMC is one of the most promising cellulose derivatives and the most widely used in the drilling sector. Owing to its multifunctionality, facile, inexpensive, raw material abundance, availability, compatibility, distinctive surface property and many other disparate aspects, it is now widely used in many fields for a variety of applications, including the oil and gas industry, pharmaceuticals, food, textiles, wastewater treatment, and energy production/storage. Despite CMC’s wide applications in many fields, very few studies report its role in oil and gas operations such as drilling and completion, hydraulic fracturing, corrosion inhibition and cementing applications. As a result, this review points some of CMC’s relevance in the oil and gas industry now and in future.Item Advancement in Magnesium Metal Matrix Composites: A Mini-Review of Production Techniques, Properties, and Applications(IEEE, 2024-08-15) Peter Pelumi Ikubanni; Adekunle Akanni Adeleke; Samuel O. Oladimeji; Olayinka O. Agboola; Bamidele T. Ogunsemi; Olatunji P. Abolusoro; Peter Onu; Remilekun R. ElewaThe advancement of research in new engineering materials has led to the development of magnesium metal matrix composites (Mg MMCs). This study critically examined the production techniques, properties, and applications of Mg MCs. Powder metallurgy and casting routes were the two classifications of the techniques for producing Mg MMCs. The mechanical, tribological, corrosion, and bio-compatibility properties of the composites and the application of the Mg MMCs were reviewed. Orowan strengthening mechanism, Hall Petch strengthening mechanism, and Taylor strengthening mechanism were the mechanisms responsible for the improvement of the strength of the composite. The study further highlighted the areas for future studies.Item Advent of Artificial Intelligence in Automotive Engineering(IEEE, 2024-02-29) Adeiza Avidime Samuel; Adekunle Akanni Adeleke; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Favour Oluwasayo Adeyemi; Jamiu Kolawole Odusote; Matthew Onuoha; Usman ShuaibArtificial intelligence (AI) has long been a topic of interest and with its constant development and growing popularity and functions, it is no surprise that it has made its way into the automotive industry. For ages, people have done research regarding AI in the automotive industry, and with the increasing popularity of this subject, the research only goes deeper. This paper gives an analysis of previous research under different areas which involve AI in automotives, somewhat singling out autonomous vehicles. We also go into the basis of artificial intelligence, as well as highlight a few challenges which face the integration of AI into the automotive industry.Item Analysis of an Experimental Digital Read-outs Slider Crank Mechanism(IEEE, 2024-08-15) Jamiu Kolawole Odusote; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Qudus A. Siyanbola; Oluwasogo L. Ogundipe; Olayinka O. AgboolaSlider-crank mechanism (SCM) was developed with digital read-outs in this study to make the reading of experimental results more accurate. They are connected by joints and force elements for the conversion of reciprocating motion into rotary motion or vice-versa. A digital protractor (accuracy = ±𝟎. 𝟐) and a digital vernier caliper (accuracy = +0.02 mm) were incorporated as the crank and the slider respectively, while a stainless-steel plate was made the connecting link. The deviation of the slider (displacement) values from the corresponding theoretical values at various angles was determined. The simple harmonic ratio of the analogue mechanism is higher than that of the digital mechanism but the deviations of the slider (displacement) values of the digital mechanism from the theoretical values are quite negligible. The deviations of the analogue system from its corresponding theoretical values are far higher. Based on the result obtained, the digital system is more precise and accurate for experimental studies than the analogue system.Item ANALYSIS OF PROPERTIES OF REINFORCING STEEL BARS: CASE STUDY OFCOLLAPSED BUILDING IN LAGOS, NIGERIA(Trans Tech Publications, 2012-02-02) Jamiu Kolawole Odusote; Adekunle Akanni AdelekeThe chemical compositions and the microstructures of reinforcing steel bars obtained from three different collapsed building sites were studied. Optical emission spectrometer was used to carry out the chemical analysis, while the microstructure was examined using an optical microscopy. The carbon contents of the steel bars were found to be higher than BS4449 and ASTM706 standards, but they are in close range with the Nst-65-Mn standard. The manganese contents of the steel bars are lower, while the sulphur and phosphorus contents are quite higher than the BS4449, ASTM706 and Nst-65-Mn standards. The hardness values of the investigated bars are higher than recommended BS4449 standard but lower than Nst-65-Mn standard. Brittle globules of Fe3P and FeS were observed within the structure possibly due to higher contents of deleterious sulphur and phosphorus. The results suggest that the investigated reinforcing bars are brittle and thus contributing significantly to the collapse of the building structures.Item Application of Conversion Coatings on Aluminum Matrix Composites for Corrosion Protection(Portugaliae Electrochimica Acta, 2025-02-02) Peter Pelumi Ikubanni; Makanjuola Oki; Adekunle Akanni Adeleke; T. A. Orhadahwe; A. A. Samuel; J. A. Okolie; P. O. Omoniyi; T. C. JenAccelerated corrosion is closely associated with the inclusion of secondary reinforcement particulates in metal matrices, where they are usually present as cathodic sites. This hinders full utilization of composite products for engineering applications. In this study, chemical CC were used to improve MMC corrosion in atmospheric and simulated seawater environments. Comparison between CCC and PPCC performance was done to find a substitute for the former, which contains carcinogenic Cr VI ions. Japanese industrial testing method was used to determine the composite LC/CC samples adhesion characteristics, after a series of exposure regimens. CCC specimens displayed marginal corrosion resistance superiority over their PPCC counterparts. There was little to no pits on the CC substrate compared to the non-coated samples. The CC applied on the substrates prevented the coating delamination. The lacquer remained unpeeled on the substrate, during Japanese industrial testing. This indicates reduced corrosion activities on the substrates.Item Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview(Elsevier, 2023-06-16) Usman Khan; Chukwuma C. Ogbaga; Okon-Akan Omolabake Abiodun; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Patrick U. Okoye; Jude A. OkolieRapid industrial developments and rising population are mounting concerns, leading to increased greenhouse gas (GHG) emissions and resultant climate change. Therefore, to curb such drastic trends, it is necessary to adopt and develop a sustainable environment. Among the most effective ways to lower GHG emissions is carbon capture. Absorption is one of the most mature methods of reducing CO2 due to its high processing capacity, excellent adaptability, and reliability. This study aims to evaluate the most recent advancements in various CO2 capture techniques, with an emphasis on absorption technology. The techno-economic analyses of absorption-based CO2 capture processes were meticulously discussed. These include studies on solvent screening as well as techno-economic analysis methods. Economic estimators such as the payback period, rate of return and net present value are discussed. The research progress in absorption-based capture compared to other separation methods, is elucidated. Advances in the applications of various absorption solvents including aqueous, phase change solvents and deep eutectic solvents are presented. Finally, key recommendations are provided to tackle the challenges for efficient utilization of the absorption technique.Item Assessment of Suitability of Nigerian Made Steel Bars for Structural Applications(The Journal of the Association of Professional Engineers of Trinidad and Tobago, 2016-10-02) Abdul Ganiyu F. Alabi; Akintunde O. Ayoade; Jamiu Kolawole Odusote; Adekunle Akanni AdelekeThe mechanical properties of selected reinforcing steel bars produced from two rolling mills in Osun State, Nigeria were studied. An optical emission spectrometer was used for chemical composition analysis while the tensile test was carried out using a Universal Testing Machine. Izod v-notched was used for impact test, while the hardness values were obtained from Brinnel hardness tester. Scanning Electron Microscope was used for the fractured surface fractography. The Ultimate Tensile Strengths (UTS) of all the samples are higher than BSS4449:2005+A2:2005 standard and are also in close proximity to A707M-15 standard. Samples A12, B10 and B12 possessed higher yield strengths than samples A16 and B16 but lower than those of BSS4449:2005+A2:2005 and A707M-15 standards. Ductile property of the samples doubled the recommended Nst-65-Mn standard values while the hardness and ductility properties are higher than the recommended A707M-15 and BS4449 standards. The results showed that the investigated reinforcing bar samples possessed reasonably high strength and ductility when compared with available standards. Consequently, these bars would be suitable for structural applications where strength and ductility are critical properties. They would also be used in steel reinforcement applications that would require continuous and repetitive loading such as in buildings and bridges.Item ASSESSMENT OF TRIBOLOGICAL PROPERTIES OF STIR CAST Al6063 ALLOY REINFORCED WITH OKABA COAL ASH(SCICELL, 2023-03-23) Jamiu Kolawole Odusote; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Qudus Badrudeen; Adeiza Avidime Samuel; Olalekan Ogunniyi; Temitayo Samson OgedengbeComposite are multi-phase materials made up of matrix and reinforcement. This paper assesses the tribological property of Al6063 alloy (AMCs) reinforced with Okaba coal ash (OCA) using the stir casting method. By using a constant speed of 1000 rpm and two different loads (250 g and 750 g) on Taber wear apparatus, the tribological properties of the produced composite are contrasted with those of an unreinforced Al6063 alloy. The results show a reduction in wear index and the highest abrasion resistance at 4 wt.% coal ash at 500 g and 1000 rpm, as well as at 0, 2, and 6 wt.% with 8.688, 5.878, and 5.813 at 500g and 8.688, 5.878, 4.125, and 5.813 at 750g, respectively. Therefore, for all composite products compared to metal, there is an increase in abrasion resistance with a decrease in wear index, but this decreases when the load is increased to 750g, showing that the higher the load, the higher the wear index, which results in a reduction in abrasion resistance. Load is taken into greater consideration when using the AMCs manufactured in engineering applications. Additionally, SEM images revealed uniform distribution of the OCA reinforcement in the matrix alloy; thereby, improving its wear resistance.Item Biomethane and propylene glycol synthesis via a novel integrated catalytic transfer hydrogenolysis, carbon capture and biomethanation process(Elsevier, 2023-06-16) Jude A. Okolie; Omoarukhe, Fredrick, O.; Epelle, Emmanuel, I.; Ogbaga, Chukwuma, C.; Adekunle Akanni Adeleke; Okoye, Patrick, U.A novel conceptual design for the co-production of biomethane and propylene glycol from integrated catalytic transfer hydrogenolysis (CTH), biogenic CO2 capture and biomethanation reaction was presented in this study. Furthermore, process economics and environmental impact study was performed to appraise the feasibility of the proposed design. The minimum selling price (MSP) of propylene glycol produced considering the overall cost of biomethane as co-product is 1.41 U.S.$/kg. However, if the cost of biomethane was not considered or if the biomethane produced is not enough to yield a yearly revenue then the MSP would increase to 1.43 U.S.$/kg. The MSP of biomethane for the integrated process was 148 U.S.$/MWh. The MSPs of propylene glycol and biomethane were comparable with those of the business-as-usual technology. Factors such as hydrogen donor solvent cost, catalyst cost, electricity price and equipment purchase cost influenced the MSP. Environmental assessment studies showed that the standalone CTH had a higher overall carbon footprint (carbon emissions of 3.7 MM tonnes/yr.). This could be attributed to the consumption of CO2 derived from the process streams via biomethanation process.Item Characterization and assessment of selected agricultural residues of Nigerian origin for building applications(Taylor and Francis, 2025-12-31) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala VololonirinaThe high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applications