Department of Mechanical Engineering
Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/129
Browse
Search Results
Item Synthesis and Characterization of Eggshell-derived Hydroxyapatite for Dental Implant Applications(EDP Sciences, 2023-01-01) Jamiu Kolawole Odusote; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Peter Omoniyi; Tien-Chien Jen; G. Odedele; Jude A. Okolie; Esther Titilayo AkinlabiHydroxyapatite (HAp) production from eggshells for dental implant purposes involved a novel approach utilizing a wet chemical precipitation technique. The eggshells, finely ground to a size below 250 μm, underwent calcination at a high temperature of 900°C for 2 hours. This thermal treatment facilitated the conversion of calcium carbonate into calcium oxide (CaO) while eliminating any organic components in the eggshell. To initiate the synthesis of HAp, a solution comprising 0.6 M phosphoric acid was added to the CaO dispersed in water. The resulting mixture was allowed to undergo aging at different time intervals ranging from 0 to 24 hours, promoting the formation of HAp. Subsequently, the HAp particles were oven-dried at 100°C for 2 hours to remove residual moisture. Finally, the dried particles were sintered at 1200°C in a muffle furnace to achieve the desired properties for dental implant applications. XRD peaks at 25, 33, 40, and 50° confirm the synthesized material as HAp. Vibrational modes of phosphate (PO43-), hydroxyl (OH-), and carbonate (CO32-) groups indicate carbonated HAp. Synthesized HAp holds potential for biomedical applications.Item Characterization of Wheat Husk ASH and Calcined Eggshell as Potential Glass Former(IEEE, 2023-11-01) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Peter Pelumi Ikubanni; Ayuba Salihu; Adebayo Isaac OloshoNumerous agricultural byproducts, such as rice husk and straw, bagasse from sugar cane, palm kernel shell, wheat husk and straw, corn cobs, etc, are highly desired for the production of renewable energy and are seen as potential raw materials for high-value products. Because they can be used to extract quality silica and Calcium oxide for borosilicate glass production, this research has demonstrated that these wastes have a significant end value. X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray fluorescence spectroscopy (XRF) were used to characterize the calcined waste eggshell and wheat husk ash for crystal type, compound identification, and chemical composition. The findings demonstrated that the amount of silica and calcium oxide obtained from agricultural waste could be a suitable alternative source for making glass, with calcined eggshells having a calcium oxide content of 91.7% and wheat husk ash having a silica content of 71.3%. The potential for utilizing the CaO and amorphous silica in the formation of glass is thus intriguing.