Department of Mechanical Engineering

Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/129

Browse

Search Results

Now showing 1 - 10 of 10
  • Item
    Green Corrosion Inhibition Practices
    (IEEE, 2023-11-01) Petrus Nzerem; Adekunle Akanni Adeleke; Ayuba Salihu; Esther Nneka Anosike-Francis; Adeiza Avidime Samuel; Adebayo Isaac Olosho; India Chiazokam Odezugo; Jachimike Agbo Samuel; Peter Pelumi Ikubanni
    Corrosion poses significant challenges for industries worldwide, causing financial losses, safety risks, and environmental issues. To address these concerns, there has been a shift towards sustainable corrosion prevention techniques. This review presents a summary of corrosion, corrosion inhibitors, and specifically focuses on green corrosion inhibitors. It discusses relevant literature exploring various types of green inhibitors to mitigate corrosion. Additionally, it highlights recent progressions in the application of green corrosion inhibitors. The insights presented in this paper enable researchers, engineers, and business experts to adopt sustainable corrosion prevention solutions.
  • Item
    Formed Coke from Coal and Plastic: A Review
    (IEEE, 2023-02-28) Adekunle Akanni Adeleke; Petrus Nzerem; Ayuba Salihu; Jamiu Kolawole Odusote; Adebayo Isaac Olosho; Peter Pelumi Ikubanni; Yazeed Abubakar Mohammed; Samuel Chijoke Lawrence; Temitayo Samson Ogedengbe; Adeiza Avidime Samuel
  • Item
    Characterization of Wheat Husk ASH and Calcined Eggshell as Potential Glass Former
    (IEEE, 2023-11-01) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Peter Pelumi Ikubanni; Ayuba Salihu; Adebayo Isaac Olosho
    Numerous agricultural byproducts, such as rice husk and straw, bagasse from sugar cane, palm kernel shell, wheat husk and straw, corn cobs, etc, are highly desired for the production of renewable energy and are seen as potential raw materials for high-value products. Because they can be used to extract quality silica and Calcium oxide for borosilicate glass production, this research has demonstrated that these wastes have a significant end value. X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray fluorescence spectroscopy (XRF) were used to characterize the calcined waste eggshell and wheat husk ash for crystal type, compound identification, and chemical composition. The findings demonstrated that the amount of silica and calcium oxide obtained from agricultural waste could be a suitable alternative source for making glass, with calcined eggshells having a calcium oxide content of 91.7% and wheat husk ash having a silica content of 71.3%. The potential for utilizing the CaO and amorphous silica in the formation of glass is thus intriguing.
  • Item
    Compositional Analysis and Characterisation of Non-edible Plant Biomass for Carboxymethyl Cellulose Production
    (IEEE, 2023-11-01) Hauwa A. Rasheed; Adekunle Akanni Adeleke; Petrus Nzerem; Ayuba Salihu; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni
    This study assesses the compositional analysis and characterization of eight non-edible plant biomass identified as a potential feedstock to produce carboxymethyl cellulose. The materials' contents were ascertained by gravimetric analysis, and they were further characterized using Fourier transforms Infrared spectroscopy. According to the research, cellulose was present in substantial amounts ranging from 33 % to 41 %, with sugarcane bagasse having the highest concentration. The percentage of hemicellulose ranged from 18 % to 28 %, with corn cob having the highest percentage. Also discovered was that lignin content varied between 9 % and 22 %, with mahogany having the highest amount amongst the samples. The FTIR spectroscopic analysis of all eight samples reveals a broad band at around 3300 cm-1, which is caused by the stretching vibration of the cellulose's O-H groups. The observed peaks at 1600 cm-1 and 1500 cm-1 correlated to the hemicellulose and lignin's respective C=O and C=C stretching vibrations. Additionally, a significant sharp peak that matched the stretching vibrations in the skeleton of the pyranose ring, C-O-C, was seen at roughly 1050 cm-1. Thus, the findings of this study indicate that all eight samples can yield a respectable amount of cellulose, suggesting that these wastes may serve as feedstocks for the creation of biopolymers like carboxymethyl cellulose (CMC).
  • Item
    A review on the use of carboxymethyl cellulose in oil and gas field operations
    (Cellulose, 2023-09-17) Hauwa A. Rasheed; Adekunle Akanni Adeleke; Petrus Nzerem; Olusegun Ajayi; Peter Pelumi Ikubanni; Asmau M. Yahya
    The purpose of this review is to highlight the applications of carboxymethyl cellulose (CMC) in oil and gas industries. CMC is one of the most promising cellulose derivatives and the most widely used in the drilling sector. Owing to its multifunctionality, facile, inexpensive, raw material abundance, availability, compatibility, distinctive surface property and many other disparate aspects, it is now widely used in many fields for a variety of applications, including the oil and gas industry, pharmaceuticals, food, textiles, wastewater treatment, and energy production/storage. Despite CMC’s wide applications in many fields, very few studies report its role in oil and gas operations such as drilling and completion, hydraulic fracturing, corrosion inhibition and cementing applications. As a result, this review points some of CMC’s relevance in the oil and gas industry now and in future.
  • Item
    A Review on Biomass Briquettes as Alternative and Renewable Fuels
    (IEEE, 2023-02-28) Adekunle Akanni Adeleke; Petrus Nzerem; Ayuba Salihu; Esther Nneka Anosike-Francis; Adebayo Isaac Olosho; Etowa Emmanuel Obasesam; Sakeenah Sadiq Abubakar; Dakut John Yerima; Khaleel Jakada
    The adverse effects of the combustion of fossil fuels on humanity and the environment have made it vital to discover eco-friendly, sustainable, and renewable energy alternatives. Globally, there exists loose biomass, which is agricultural and cultural waste that can be utilised to produce briquettes, a type of solid fuel. Briquettes have played a significant role in the energy generation economies of both developing and developed nations. The production of briquettes involves a series of activities, including collection, transportation, storage, processing, and densification of the feedstock to meet predetermined quality parameters. Rice husk, corn stalk, wheat straw, cassava stalk, groundnut shell, olive husk, palm kernel shell and coconut shell are among the feedstocks for briquettes. In order to increase the cohesive strength of the briquettes, binders are incorporated during the densification process. This study aims to investigate the current state of research regarding the utilisation of biomass-derived briquettes as a viable substitute for traditional fuels. To achieve this objective, a comprehensive analysis of recent literature published between 2017 and 2023 is conducted. This study encompasses essential subtopics, including the accessibility of biomass, the selection of binders, the parameters of the briquette process, and the equipment used for briquetting.
  • Item
    A Review on Extraction of Rare Earth Elements (REEs) From Coal Using Acid Leaching
    (IEEE, 2023-11-01) Rabiatu Adamu Saleh; Abdullahi Gimba; Adekunle Akanni Adeleke; Adebayo Isaac Olosho; Taofeek Sunmonu; Petrus Nzerem; Ayuba Salihu; Chinomso Odimba
    Coal has become a feasible source of rare earth elements (REEs; the 14 stable lanthanides, scandium, and yttrium). It is believed to contain significant amounts of rare earth elements, making it a primary source of REEs which serves as basic raw materials in the production of renewable energy. This review established the feasibility of recovering REEs from coal using acid leaching method. It discusses; the sourcing of REEs from coal, the applications of REEs and acid leaching as an effective hydrometallurgical method for extracting REEs from coal. It also examined the efficiency of methods used by other researchers in extracting REEs from coal. However, the potential of acid leaching as a solution to issues such as: difficult leaching conditions, low recovery and the use of expensive chemicals has not been fully investigated. For a better choice in the extraction of REEs from coal, more study and review are necessary.
  • Item
    A Review of Rare Earth Ion-Doped Glasses: Physical, Optical, and Photoluminescence Properties
    (Trends in Sciences, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. Okolie
    Researchers worldwide have shown significant interest in doping glasses with rare-earth ions. This is particularly intriguing because rare-earth ions are extensively used to enhance the optical properties of host glasses, capitalizing on their unique spectroscopic characteristics due to optical transitions within the intra-4f shell. An in-depth review was conducted on various glass fabrication methods, such as sputtering, solgel, chemical vapor deposition, ion exchange, and direct melt quenching. The study emphasized the physical, optical, and photoluminescence properties of glasses made from glass formers co-doped with rare earth ions. Understanding the interrelationship between these properties is crucial for optimizing material performance across various technological applications. The research highlights the broad applicability of rare-earth-doped glasses in fields like white light emission, photonic devices, solid-state lasers, optical fiber communication, and biomedical applications
  • Item
    Production of bioplastic films from wild cocoyam (Caladium bicolor) starch
    (Elsevier, 2024-10-15) Chinaza Enwere; Ikechukwu Okafor; Adekunle Akanni Adeleke; Petrus Nzerem; Khaleel Jakada; Adebayo Isaac Olosho; Peter Pelumi Ikubanni; Prabhu Paramasivam; Ayuba Salihu
    This study tackles the pressing environmental challenges resulting from the rapid and ongoing use of conventional plastics by investigating biodegradable alternatives derived from wild cocoyam starch. The bioplastics developed from various formulations, incorporating gelatin, glycerine, vegetable oil, and vinegar, were systematically evaluated for their mechanical, chemical, microstructural and biodegradability properties. The addition of glycerine and gelatin enhanced the moisture content and flexibility of the films while vegetable oil improved water resistance, reducing water absorption. Th sample that contains 3 g of gelatin and 3 ml of glycerine exhibited the best overall performance with a tensile strength of 6.5 MPa and an elongation at break of 77 %. This sample also achieved an impressive biodegradation rate of 70 % within 7 days. Scanning Electron Microscopy revealed a uniform and smooth morphology, while Fourier Transform Infrared Spectroscopy confirmed the presence of key functional groups responsible for the material's performance. These results establish wild cocoyam starch as a promising resource for producing biodegradable bioplastics with considerable potential in various industries, particularly in packaging and agricultural applications. The excellent mechanical properties and biodegradability of the materials along with its natural abundance, offer an eco-friendly solution to the plastic waste problem. The study also opens new avenues for optimizing bioplastic formulations to enhance specific properties like thermal stability and moisture resistance, further broadening their practical applications. This research contributes to the sustainable materials landscape and represents a step toward reducing reliance on fossil-based plastics, advancing the global effort to mitigate environmental pollution.
  • Item
    Nigerian Biomass for Bioenergy Applications: A Review on the Potential and Challenges
    (Journal of Renewable Materials, 2023-10-24) Adekunle Akanni Adeleke ; Petrus Nzerem; Ayuba Salihu ; Asmau M. Yahya; Peter Pelumi Ikubanni; Ikechuckwu Okafor; Stephen S. Emmanuel; Adebayo Isaac Olosho; Ademidun A. Adesibikan
    Nigeria, often referred to as “the giant of Africa,” boasts a sizable population, a thriving economy, and abundant energy resources. Nevertheless, Nigeria has yet to fully harness its renewable energy potential, despite its enormous capacity in this field. The goal of this review paper is to thoroughly examine the difficulties and untapped opportunities in utilizing biomass for bioenergy production in Nigeria. Notably, Nigeria generates substantial volumes of biomass annually, primarily in the form of agricultural waste, which is often either discarded or burned inefficiently, resulting in significant ecological and environmental damage. Therefore, an efficient approach to reducing pollution and transforming waste into wealth involves converting these biomass resources into energy. This work critically examines the status of biomass utilization for energy applications in Nigeria and highlights the bottlenecks that impede its widespread adoption. The review emphasizes the economic and ecological advantages of biomass utilization over traditional waste treatment methods. Additionally, it underscores the appeal of biomass as an industrial fuel source, particularly considering the current high cost of fossil fuels in contemporary Nigeria. Relevant literature on biomass, energy, agricultural waste, fossil fuel, and calorific value in the context of Nigeria was reviewed by utilizing a thorough search technique in key scientific databases. The analysis did not include any non-English publications. The findings of this research provide valuable insights into the challenges faced in maximizing Nigeria’s biomass potential and offer strategic recommendations to promote the use of biomass for bioenergy development. This review paper will assist a wide range of local and international readers, as well as industries interested in green and bioenergy, in making informed decisions regarding the most suitable types of biomass for biofuel production.