Department of Mechanical Engineering

Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/129

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Characterization and assessment of selected agricultural residues of Nigerian origin for building applications
    (COGENT ENGINEERING, 2024-12-22) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala Vololonirina
    The high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 °C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applications
  • Item
    Green Corrosion Inhibition Practices
    (IEEE, 2023-11-01) Petrus Nzerem; Adekunle Akanni Adeleke; Ayuba Salihu; Esther Nneka Anosike-Francis; Adeiza Avidime Samuel; Adebayo Isaac Olosho; India Chiazokam Odezugo; Jachimike Agbo Samuel; Peter Pelumi Ikubanni
    Corrosion poses significant challenges for industries worldwide, causing financial losses, safety risks, and environmental issues. To address these concerns, there has been a shift towards sustainable corrosion prevention techniques. This review presents a summary of corrosion, corrosion inhibitors, and specifically focuses on green corrosion inhibitors. It discusses relevant literature exploring various types of green inhibitors to mitigate corrosion. Additionally, it highlights recent progressions in the application of green corrosion inhibitors. The insights presented in this paper enable researchers, engineers, and business experts to adopt sustainable corrosion prevention solutions.
  • Item
    Characterization and assessment of selected agricultural residues of Nigerian origin for building applications
    (Taylor and Francis, 2025-12-31) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala Vololonirina
    The high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applications
  • Item
    Advent of Artificial Intelligence in Automotive Engineering
    (IEEE, 2024-02-29) Adeiza Avidime Samuel; Adekunle Akanni Adeleke; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Favour Oluwasayo Adeyemi; Jamiu Kolawole Odusote; Matthew Onuoha; Usman Shuaib
    Artificial intelligence (AI) has long been a topic of interest and with its constant development and growing popularity and functions, it is no surprise that it has made its way into the automotive industry. For ages, people have done research regarding AI in the automotive industry, and with the increasing popularity of this subject, the research only goes deeper. This paper gives an analysis of previous research under different areas which involve AI in automotives, somewhat singling out autonomous vehicles. We also go into the basis of artificial intelligence, as well as highlight a few challenges which face the integration of AI into the automotive industry.
  • Item
    A Review on Biomass Briquettes as Alternative and Renewable Fuels
    (IEEE, 2023-02-28) Adekunle Akanni Adeleke; Petrus Nzerem; Ayuba Salihu; Esther Nneka Anosike-Francis; Adebayo Isaac Olosho; Etowa Emmanuel Obasesam; Sakeenah Sadiq Abubakar; Dakut John Yerima; Khaleel Jakada
    The adverse effects of the combustion of fossil fuels on humanity and the environment have made it vital to discover eco-friendly, sustainable, and renewable energy alternatives. Globally, there exists loose biomass, which is agricultural and cultural waste that can be utilised to produce briquettes, a type of solid fuel. Briquettes have played a significant role in the energy generation economies of both developing and developed nations. The production of briquettes involves a series of activities, including collection, transportation, storage, processing, and densification of the feedstock to meet predetermined quality parameters. Rice husk, corn stalk, wheat straw, cassava stalk, groundnut shell, olive husk, palm kernel shell and coconut shell are among the feedstocks for briquettes. In order to increase the cohesive strength of the briquettes, binders are incorporated during the densification process. This study aims to investigate the current state of research regarding the utilisation of biomass-derived briquettes as a viable substitute for traditional fuels. To achieve this objective, a comprehensive analysis of recent literature published between 2017 and 2023 is conducted. This study encompasses essential subtopics, including the accessibility of biomass, the selection of binders, the parameters of the briquette process, and the equipment used for briquetting.
  • Item
    A Review of Rare Earth Ion-Doped Glasses: Physical, Optical, and Photoluminescence Properties
    (Trends in Sciences, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. Okolie
    Researchers worldwide have shown significant interest in doping glasses with rare-earth ions. This is particularly intriguing because rare-earth ions are extensively used to enhance the optical properties of host glasses, capitalizing on their unique spectroscopic characteristics due to optical transitions within the intra-4f shell. An in-depth review was conducted on various glass fabrication methods, such as sputtering, solgel, chemical vapor deposition, ion exchange, and direct melt quenching. The study emphasized the physical, optical, and photoluminescence properties of glasses made from glass formers co-doped with rare earth ions. Understanding the interrelationship between these properties is crucial for optimizing material performance across various technological applications. The research highlights the broad applicability of rare-earth-doped glasses in fields like white light emission, photonic devices, solid-state lasers, optical fiber communication, and biomedical applications