Department of Mechanical Engineering
Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/129
Browse
4 results
Search Results
Item Characterization and assessment of selected agricultural residues of Nigerian origin for building applications(COGENT ENGINEERING, 2024-12-22) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala VololonirinaThe high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 °C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applicationsItem Characterization and assessment of selected agricultural residues of Nigerian origin for building applications(Taylor and Francis, 2025-12-31) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala VololonirinaThe high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applicationsItem Advent of Artificial Intelligence in Automotive Engineering(IEEE, 2024-02-29) Adeiza Avidime Samuel; Adekunle Akanni Adeleke; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Favour Oluwasayo Adeyemi; Jamiu Kolawole Odusote; Matthew Onuoha; Usman ShuaibArtificial intelligence (AI) has long been a topic of interest and with its constant development and growing popularity and functions, it is no surprise that it has made its way into the automotive industry. For ages, people have done research regarding AI in the automotive industry, and with the increasing popularity of this subject, the research only goes deeper. This paper gives an analysis of previous research under different areas which involve AI in automotives, somewhat singling out autonomous vehicles. We also go into the basis of artificial intelligence, as well as highlight a few challenges which face the integration of AI into the automotive industry.Item A Review of Rare Earth Ion-Doped Glasses: Physical, Optical, and Photoluminescence Properties(Trends in Sciences, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. OkolieResearchers worldwide have shown significant interest in doping glasses with rare-earth ions. This is particularly intriguing because rare-earth ions are extensively used to enhance the optical properties of host glasses, capitalizing on their unique spectroscopic characteristics due to optical transitions within the intra-4f shell. An in-depth review was conducted on various glass fabrication methods, such as sputtering, solgel, chemical vapor deposition, ion exchange, and direct melt quenching. The study emphasized the physical, optical, and photoluminescence properties of glasses made from glass formers co-doped with rare earth ions. Understanding the interrelationship between these properties is crucial for optimizing material performance across various technological applications. The research highlights the broad applicability of rare-earth-doped glasses in fields like white light emission, photonic devices, solid-state lasers, optical fiber communication, and biomedical applications