Department of Mechanical Engineering

Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/129

Browse

Search Results

Now showing 1 - 10 of 14
  • Item
    Characterization and assessment of selected agricultural residues of Nigerian origin for building applications
    (COGENT ENGINEERING, 2024-12-22) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala Vololonirina
    The high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 °C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applications
  • Item
    DEVELOPMENT AND ASSESSMENT OF PARTICLE REINFORCED ABRASIVE GRINDING DISCS FROM LOCALLY SOURCED MATERIALS
    (Journal of Chemical Technology and Metallurgy, 2024-09-09) Jamiu Kolawole Odusote; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Timothy Adekanye; Adeiza Avidime Samuel; Chinedum Oji
    Management of waste materials is a serious concern to researchers and scientists. Waste materials cause health and environmental hazards. Hence, they should be properly managed. The aim of this study is to develop a grinding disc using agricultural wastes (palm kernel shell and snail shell), granite, aluminium oxide, and polyester resin. The particles of snail shell, palm kernel shell, aluminium oxide (abrasive) and granite (friction modifier) were measured in percentages varying between 8 - 29 wt. % and were mixed with 27 wt. % polyester resin (binder), 3 wt. % methyl ethyl ketone peroxide (hardener) and 3 wt. % cobalt naphthalene (accelerator) to produce a grinding disc. The micrograph, hardness, wear rate, and water absorption tests were carried out on the grinding disc samples. The result showed that the composition with the highest palm kernel shell particle content (29 wt. %) had the best values for hardness and wear resistance, making it the most suitable material for grinding discs. The environmentally-friendly palm kernel shell-based discs could be used for soft metals, wood grinding and finishing processes.
  • Item
    Characterization and assessment of selected agricultural residues of Nigerian origin for building applications
    (Taylor and Francis, 2025-12-31) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala Vololonirina
    The high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applications
  • Item
    Analysis of an Experimental Digital Read-outs Slider Crank Mechanism
    (IEEE, 2024-08-15) Jamiu Kolawole Odusote; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Qudus A. Siyanbola; Oluwasogo L. Ogundipe; Olayinka O. Agboola
    Slider-crank mechanism (SCM) was developed with digital read-outs in this study to make the reading of experimental results more accurate. They are connected by joints and force elements for the conversion of reciprocating motion into rotary motion or vice-versa. A digital protractor (accuracy = ±𝟎. 𝟐) and a digital vernier caliper (accuracy = +0.02 mm) were incorporated as the crank and the slider respectively, while a stainless-steel plate was made the connecting link. The deviation of the slider (displacement) values from the corresponding theoretical values at various angles was determined. The simple harmonic ratio of the analogue mechanism is higher than that of the digital mechanism but the deviations of the slider (displacement) values of the digital mechanism from the theoretical values are quite negligible. The deviations of the analogue system from its corresponding theoretical values are far higher. Based on the result obtained, the digital system is more precise and accurate for experimental studies than the analogue system.
  • Item
    Advent of Artificial Intelligence in Automotive Engineering
    (IEEE, 2024-02-29) Adeiza Avidime Samuel; Adekunle Akanni Adeleke; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Favour Oluwasayo Adeyemi; Jamiu Kolawole Odusote; Matthew Onuoha; Usman Shuaib
    Artificial intelligence (AI) has long been a topic of interest and with its constant development and growing popularity and functions, it is no surprise that it has made its way into the automotive industry. For ages, people have done research regarding AI in the automotive industry, and with the increasing popularity of this subject, the research only goes deeper. This paper gives an analysis of previous research under different areas which involve AI in automotives, somewhat singling out autonomous vehicles. We also go into the basis of artificial intelligence, as well as highlight a few challenges which face the integration of AI into the automotive industry.
  • Item
    Advancement in Magnesium Metal Matrix Composites: A Mini-Review of Production Techniques, Properties, and Applications
    (IEEE, 2024-08-15) Peter Pelumi Ikubanni; Adekunle Akanni Adeleke; Samuel O. Oladimeji; Olayinka O. Agboola; Bamidele T. Ogunsemi; Olatunji P. Abolusoro; Peter Onu; Remilekun R. Elewa
    The advancement of research in new engineering materials has led to the development of magnesium metal matrix composites (Mg MMCs). This study critically examined the production techniques, properties, and applications of Mg MCs. Powder metallurgy and casting routes were the two classifications of the techniques for producing Mg MMCs. The mechanical, tribological, corrosion, and bio-compatibility properties of the composites and the application of the Mg MMCs were reviewed. Orowan strengthening mechanism, Hall Petch strengthening mechanism, and Taylor strengthening mechanism were the mechanisms responsible for the improvement of the strength of the composite. The study further highlighted the areas for future studies.
  • Item
    A Model-Based Design of an Electric Kettle for Nigerian Households
    (IEEE, 2024-08-15) Nwachukwu Praise; Ibikunle Rotimi; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Seun Jesuloluwa; Onyemachukwu Chidindu
    Electric kettles, essential in Nigerian households is the focus of this paper. It aims to develop and analyse discrete-time and continuous-time models using engineering software. First, a Computer-Aided Design (CAD) model is developed, followed by the comprehensive analysis of the steady-state thermal properties of the model using finite element analysis (FEA). Subsequently, a physical model, with three sub-systems, is developed and subjected to simulation. This study examines both models, scrutinizes the effect of alterations in thermal parameters, and conducts a comparative analysis with an actual kettle. The findings, offer valuable insights into the dynamics of the electric kettle and provide intuitive suggestions for enhancing its efficiency and usage.
  • Item
    A Review of Rare Earth Ion-Doped Glasses: Physical, Optical, and Photoluminescence Properties
    (Trends in Sciences, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. Okolie
    Researchers worldwide have shown significant interest in doping glasses with rare-earth ions. This is particularly intriguing because rare-earth ions are extensively used to enhance the optical properties of host glasses, capitalizing on their unique spectroscopic characteristics due to optical transitions within the intra-4f shell. An in-depth review was conducted on various glass fabrication methods, such as sputtering, solgel, chemical vapor deposition, ion exchange, and direct melt quenching. The study emphasized the physical, optical, and photoluminescence properties of glasses made from glass formers co-doped with rare earth ions. Understanding the interrelationship between these properties is crucial for optimizing material performance across various technological applications. The research highlights the broad applicability of rare-earth-doped glasses in fields like white light emission, photonic devices, solid-state lasers, optical fiber communication, and biomedical applications
  • Item
    Application of Conversion Coatings on Aluminum Matrix Composites for Corrosion Protection
    (Portugaliae Electrochimica Acta, 2025-02-02) Peter Pelumi Ikubanni; Makanjuola Oki; Adekunle Akanni Adeleke; T. A. Orhadahwe; A. A. Samuel; J. A. Okolie; P. O. Omoniyi; T. C. Jen
    Accelerated corrosion is closely associated with the inclusion of secondary reinforcement particulates in metal matrices, where they are usually present as cathodic sites. This hinders full utilization of composite products for engineering applications. In this study, chemical CC were used to improve MMC corrosion in atmospheric and simulated seawater environments. Comparison between CCC and PPCC performance was done to find a substitute for the former, which contains carcinogenic Cr VI ions. Japanese industrial testing method was used to determine the composite LC/CC samples adhesion characteristics, after a series of exposure regimens. CCC specimens displayed marginal corrosion resistance superiority over their PPCC counterparts. There was little to no pits on the CC substrate compared to the non-coated samples. The CC applied on the substrates prevented the coating delamination. The lacquer remained unpeeled on the substrate, during Japanese industrial testing. This indicates reduced corrosion activities on the substrates.
  • Item
    Production and Characterization of Hybrid Automobile Brake Pad
    (LAUTECH Journal of Engineering and Technology, 2024-02-02) Oladejo, O. A.; Ajiboye, T.K.; Asafa, T. B.; Fajobi, M. O.; Ajayeoba, A. O.; Adekunle Akanni Adeleke; Adeoye, O. O.; Olusegun, H. D.; Peter Pelumi Ikubanni
    A brake system is highly imperative for the safe control of an articulated automobile. One of the major components of the automobile system is brake pad which is currently imported into the Nigerian market. This study was aimed at producing brake pads from locally available materials to serve as an alternative to imported pads. Samples of brake pads were produced from a mixture of epoxy resin, kaolin, barium sulphate, steel fibre, fiberglass, silica, alumina, and graphite sourced from local markets. Three samples - A, B, and C – were moulded following the standard practice for brake pad production. The samples were characterized for microstructure, hardness, wear rate, ultimate tensile strength (UTS), and impact strength. The study established that the brake pad made from 16.3% epoxy resin, 13.8% kaolin, 32.6% barium sulphate, 6.5% steel fibre, 10.4% fiberglass, 6.8% silica, 9.2% alumina, and 4.4% graphite performed optimally with a hardness of 4.59 kg/m2. The optimal brake pad had its wear rate lower than other samples after 210 s of load application, an ultimate tensile strength of 3.60 MPa and impact strength of 0.028 J/mm. SEM image of the sample indicates a homogenous distribution of the binder, fillers and reinforcing materials. Compared to sample B, the conventional brake pad had a higher Brinell hardness value of 18,592 kg/m2. The results justified that the developed brake pads have sound tribological property as prominent characteristics. The study recommends the application of the optimally produced brake in automobiles for enhanced eco user friendliness.