Faculty of Engineering

Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/14

Browse

Search Results

Now showing 1 - 10 of 107
  • Item
    Characterization and assessment of selected agricultural residues of Nigerian origin for building applications
    (COGENT ENGINEERING, 2024-12-22) Esther Nneka Anosike-Francis; Gina Odochi Ihekweme; Paschal Ateb Ubi; Ifeyinwa Ijeoma Obianyo; Seun Jesuloluwa; Adekunle Akanni Adeleke; Prabhu Paramasivam; Azikiwe Peter Onwualu; Rasoamalala Vololonirina
    The high rate of agricultural residue generation in Nigeria in recent times poses a serious environmental hazard. Thus, there is a need to valorize these residues for various engineering applications. Five Nigerian agricultural residues (okro, plantain, jute, kenaf, and sisal) were studied to determine their potential for forming natural fiber composites for building applications. The samples were subjected to a process of peeling and immersion in water for 15–20 days to facilitate the degradation of microbial cells and ease the extraction of fibers. Proximate and lignocellulose analyses of the samples were conducted according to the American Standard for Testing and Materials (ASTM) specifications. The physico-mechanical and thermal properties of the agricultural residues were examined using an Intron universal testing machine and a thermogravimetric analyzer. The fiber phase analysis revealed a crystallinity index range of 41.20–66.08% and a crystallite size of 30.79–84.00 nm, indicating that the fibers were thermally stable above 280 °C. Fourier Transform Infrared analysis provided conclusive evidence of the presence of distinct chemical compositions and their associated functional groups. The study contributes a reliable database for agricultural residues in Nigeria, particularly for construction applications. It is also being utilized to inform the design and implementation of manufacturing processes for roofing tiles and boards intended for general applications
  • Item
    Comprehensive Characterization of Some Selected Biomass for Bioenergy Production
    (ACS Omega, 2023-11-08) Asmau M. Yahya; Adekunle Akanni Adeleke; Petrus Nzerem; Peter Pelumi Ikubanni; Salihu Ayuba; Hauwa A. Rasheed; Abdullahi Gimba; Ikechukwu Okafor; Jude A. Okolie; Prabhu Paramasivam
    There is a lack of information about the detailed characterization of biomass of Nigerian origin. This study presents a comprehensive characterization of six biomass, groundnut shells, corncob, cashew leaves, Ixora coccinea (flame of the woods), sawdust, and lemongrass, to aid appropriate selection for bio-oil production. The proximate, ultimate, calorific value and compositional analyses were carried out following the American Standard for Testing and Materials (ASTM) standards. Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and X-ray fluorescence were employed in this study for functional group analyses, thermal stability, and structural analyses. The H/C and O/C atomic ratios, fuel ratio, ignitability index, and combustibility index of the biomass samples were evaluated. Groundnut shells, cashew leaves, and lemongrass were identified as promising feedstocks for bio-oil production based on their calorific values (>20 MJ/kg). Sawdust exhibited favorable characteristics for bio-oil production as indicated by its higher volatile matter (79.28%), low ash content (1.53%), low moisture content (6.18%), and high fixed carbon content (13.01%). Also, all samples showed favorable ignition and flammability properties. The low nitrogen (<0.12%) and sulfur (<0.04%) contents in the samples make them environmentally benign fuels as a lower percentage of NOx and SOx will be released during the production of the bio-oil. These results are contributions to the advancement of a sustainable and efficient carbon-neutral energy mix, promoting biomass resource utilization for the generation of energy.
  • Item
    Understanding casting behaviour of low carbon high manganese steel through detailed characterization of mould powder and mould top slag
    (Taylor and Francis, 2023-02-02) D. Paswan; J. K. Ansu; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; C. T. Christopher; T. K. Roy; P. Palai; M. Malathi
    This study focused on multistage characterization techniques in developing an understanding of the abnormal casting behaviour of low carbon high manganese (LCHMn) steel. In addition to raw mould powder used for casting LCHMn steel, mould top slag samples were also collected for normal and abnormal casting conditions. Raw mould powder and top slag samples were characterized using XRF, XRD, and SEM-EDS to determine chemical composition, crystallinity and morphology. The chemical composition results revealed deviation of normal and abnormal behaviours from the mould powder due to the pickup of oxides of Al, Mn, and Ti. The SEM analyses of raw mould powder showed different granular particle sizes while pores and glassy/crystalline structure were seen for normal and abnormal behaviour at casting. CaF2, CaSiO3, and Na2CaSi3O9 were revealed as the mineralogical phases. There was a modified crystalline phase present in the abnormal behaviours at casting due to pickup of other oxides.
  • Item
    Chemical and Mechanical Properties of Reinforcing Steel Bars from Local Steel Plants
    (Springer, 2019-06-06) Jamiu Kolawole Odusote; Wasiu Shittu; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Olumide Adeyemo
    Steel bars are important engineering materials for structural application. In Nigeria, due to incessant building collapse occurrences, it is important to further investigate some of the mechanical and chemical properties of reinforcing steel bars produced from scrap metals in order to ascertain their compliance with the required standard. Three diameters (10, 12 and 16 mm) of the reinforcing steel bars were chosen from each of the eight steel plants (A–H). Chemical composition analyses and mechanical tests (yield strength, ultimate tensile strength and percentage elongation) were performed using optical emission spectrometer and Instron Satec Series 600DX universal testing machine, respectively. Hardness values of the samples were obtained by conversion of tensile strength based on existing correlation. The results showed that carbon contents, hardness values, yield and ultimate tensile strengths of some of the steel bars were found to be higher than the BS4449, NIS and ASTM A706 standards. The steel bar samples were also found to possess good ductility with samples from steel plants C and D. By observation, all the 12 mm steel bars from steel plants A to H met the required ASTM and BS4449 standards except samples from plant G. This study revealed that most of the investigated reinforcing steel bars have reasonable yield strength, ultimate tensile strength, ductility and hardness properties when compared with the relevant local and international standards. Therefore, they are suitable for structural applications where strength and ductility will be of paramount interest
  • Item
    Comparative studies of machine learning models for predicting higher heating values of biomass
    (Institution of Chemical Engineers (IChemE), 2024-06-29) Adekunle Akanni Adeleke; Adeyinka Adedigba; Steve Adeshina; Peter Pelumi Ikubanni; Mohammed S. Lawal; Adebayo Isaac Olosho; Halima S. Yakubu; Temitayo Samson Ogedengbe; Petrus Nzerem; Jude A. Okolie
    This study addresses the challenge of efficiently determining the higher heating value (HHV) of biomass, a crucial parameter in large-scale biomass-based energy systems. The conventional method of measuring HHV using an oxygen bomb calorimeter is time-consuming, expensive, and less accessible to researchers, particularly in developing nations. To overcome these limitations, we employed four machine learning (ML) models, namely Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). These models were developed by using proximate and ultimate analysis parameters as input features. Up to 200 datasets were compiled from literature and used for the ML models. Our results demonstrate the effectiveness of all ML models in accurately predicting the HHV of biomass materials. Notably, the XGBoost model exhibited superior performance with the highest R-squared (R2) values for both training (0.9683) and test datasets (0.7309), along with the lowest root mean squared error (RSME) of 0.3558. Key influential input features identified for HHV prediction include carbon (C), volatile matter (Vm), ash, and hydrogen (H). Consequently, this research provides a reliable alternative for predicting HHV without the need for costly and time-intensive experimental measurements, facilitating broader accessibility in biomass energy research.
  • Item
    Simulation Technology in Renewable Energy Generation: A Review
    (International Conference on Multidisciplinary Engineering and Applied Sciences (ICMEAS), 2023-11-01) Adekunle Akanni Adeleke; Petrus Nzerem; Ayuba Salihu; Esther Nneka Anosike-Francis; Adebayo Isaac Olosho; Kpabep Kerein Kalenebari; Yuguda Abdullahi Muhammad; Waliyi Adekola Adeleke; Moses Oluwatobi Fajobi
    The escalating energy consumption rates and the alarming environmental impacts associated with fossil fuel usage have driven global attention towards alternative energy sources. While nuclear power has emerged as one such alternative, concerns about past reactor accidents and the health effects of radiation release have limited its widespread adoption. Renewable energy, on the other hand, offers a promising solution with minimal environmental harm compared to nuclear power. However, the intermittent nature of renewable energy sources and their inability to consistently supply power present significant challenges for nations aiming to harness these abundant resources. To address these challenges, the integration of simulation technology into energy generation processes has proven instrumental. By employing simulation tools, it becomes possible to identify, control, and even eliminate factors that may hinder energy generation and efficiency. Furthermore, simulation technology enables accurate predictions of the expected energy output from renewable sources. This paper presents a comprehensive review of the recent advancements and applications of simulation technology in renewable energy generation. It elucidates how simulation technology has been successfully integrated into renewable energy systems and discusses its potential to enhance the efficiency of renewable energy generation.
  • Item
    A Review of the Physical, Optical and Photoluminescence Properties of Rare Earth Ions Doped Glasses
    (TRENDS IN SCIENCES, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. Okolie
    Doping glasses with rare-earth ions have garnered significant attention among researchers worldwide. This interest stems from the widespread utilization of rare-earth ions to enhance the optical characteristics of host glasses and exploit the unique spectroscopic properties arising from their optical transitions in the intra-4f shell. Thus, this study reviewed the exceptional potential of rare-earth ion-doped glasses (REIs) in various applications such as solid-state lasers, photonic devices, communication optical fibers, and white light emission. Various methods for the fabrication of glass such as direct melt quenching, sol-gel, ion exchange, sputtering and co-doping techniques were reviewed extensively. The Specific focus was on the physical, optical and photoluminescence properties of glasses produced from glass formers co-doped with rare earth ions. The investigation centers on the comprehensive current applicability of REI-doped glasses.  The review concludes based on the physical, optical and photoluminescence properties of rare earth ion-doped glasses that they are extremely useful in photonics, lasers, biomedical and optical communication applications.
  • Item
    Inhibition efficiency of gold nanoparticles on corrosion of mild steel, stainless steel and aluminium in 1M HCl solution
    (Elsevier, 2021-01-01) Jamiu Kolawole Odusote; Adeolu Adesoji Adediran; R.A. Yahya; Adekunle Akanni Adeleke; J.G. Oseni; J.M. Abdul; Tesleem B. Asafa; S.A. Adedayo
    In this study, the influence of gold nanoparticles (AuNPs) on corrosion behavior of mild steel, aluminium and stainless steel in 1.0 M HCl was investigated. The nanoparticles were previously characterized using FTIR, UV–Vis and TEM. Five concentrations of AuNPs solution (0 µg/ml, 5 µg/ml, 10 µg/ml, 15 µg/ml, 20 µg/ml) were added to 1M HCl. The corrosion rates of the metal samples and inhibition efficiency of the nanoparticles were analyzed using gravimetric (weight loss) and potentiodynamic polarization techniques. After 2000 h of exposure, gravimetric study showed that weight loss was reduced by ∼75% translating to ∼85% reduction in corrosion rate for the solution containing 20 µg/ml of AuNPs. The equivalent inhibition efficiency was 88%, 98% and 96% for aluminium, mild steel and stainless steel, respectively. Furthermore, potentiodynamic polarization results showed that the presence of AuNPs modified the mechanism of anodic dissolution by the formation of adsorption layer on the surface of the metal samples. These results indicated that AuNPs can be incorporated into existing inhibitors towards minimizing corrosion rate.
  • Item
    Essential basics on biomass torrefaction, densification and utilization
    (Wiley, 2020-09-24) Adekunle Akanni Adeleke; Jamiu Kolawole Odusote; Peter Pelumi Ikubanni; Olumuyiwa A. Lasode; Madhurai Malathi; Dayanand Paswan
    Torrefaction and densification are crucial steps in upgrading biomass as feed-stock for energy generation and metallurgical applications. This paperattempts to discuss essential basics on biomass torrefaction and densification,which can propel developing nation to take full advantage of them. The mostpromising clean energy sources that have found applications in various areasare biomass materials, that is, both the lignocellulosic and non-lignocellulosi c.However, high moisture contents, low energy density, hydrophilic nature, poorstorage and handling properties are the major drawbacks limiting its useful-ness. Therefore, torrefaction as one of the major thermal pre-treatment pro-cesses to upgrade biomass in terms of improved energy density, hydrophobic,moisture content and grindability has been discussed. The influence of temper-ature, residence time, particle sizes and gas flow rates on the properties of tor-refied biomass has also been discussed. The advantages and disadvantages ofvarious torrefaction technologies have also been highlighted. The possibleareas of application of torrefied biomass especially densification into pelletsand briquettes alongside the equipment required for it have been reviewed inthis paper. The torrefied biomass can be deployed in the metallurgical indus-tries as reducing agent in the development of sponge iron from iron ores ofvarious grade including lean ones. The information gathered in this paperfrom peer-reviewed articles will reduce the burden of seeking to understandthe preliminaries of torrefaction process and its importance
  • Item
    Electrochemical Studies of the Corrosion Behavior of Al/SiC/PKSA Hybrid Composites in 3.5% NaCl Solution
    (MDPI, 2022-09-30) Peter Pelumi Ikubanni; Makanjuola Oki; Adekunle Akanni Adeleke; Olanrewaju Adesina; Peter Omoniyi; Esther Akinlabi
    The corrosion behavior of metal matrix composites (MMCs) is accelerated by the inclusion of reinforcements. Hence, this study investigates the corrosion behavior of MMCs produced from Al 6063 matrix alloy with reinforcement particulates of silicon carbide (SiC) and palm kernel shell ash (PKSA) inclusion at different mix ratios. The MMCs were synthesized using the double stir casting technique. The corrosion behaviors of the composites in NaCl solutions were studied via gravimetric analysis and electrochemical measurements. The gravimetric analysis showed fluctuating dissolution rate of the samples in NaCl solution to indicate flawed film as well as corrosion product formation over the surface of the specimens. The observed corrosion mechanism of the samples was general and pitting corrosion. The presence of reinforcements within the Al6063 matrix acted as active sites for corrosion initiation. The range of values for Ecorr and Icorr obtained in 3.5% NaCl at 24 h was between −220.62 and −899.46 mV and between 5.45 and 40.87 µA/cm2, respectively, while at 72 h, the Ecorr values ranged from 255.88 to −887.28 mV, and the Icorr ranged from 7.19 to 16.85 µA/cm2. The Nyquist and Bode plots revealed the electrochemical corrosion behavior of the samples under investigation, with predominant reactions on the surface of the samples linked to charge transfer processes. The relative resistance to corrosion of the samples depends on the thin oxide film formed on the surface of the samples.