Faculty of Engineering
Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/14
Browse
2 results
Search Results
Item Chemical and Mechanical Properties of Reinforcing Steel Bars from Local Steel Plants(Springer, 2019-06-06) Jamiu Kolawole Odusote; Wasiu Shittu; Adekunle Akanni Adeleke; Peter Pelumi Ikubanni; Olumide AdeyemoSteel bars are important engineering materials for structural application. In Nigeria, due to incessant building collapse occurrences, it is important to further investigate some of the mechanical and chemical properties of reinforcing steel bars produced from scrap metals in order to ascertain their compliance with the required standard. Three diameters (10, 12 and 16 mm) of the reinforcing steel bars were chosen from each of the eight steel plants (A–H). Chemical composition analyses and mechanical tests (yield strength, ultimate tensile strength and percentage elongation) were performed using optical emission spectrometer and Instron Satec Series 600DX universal testing machine, respectively. Hardness values of the samples were obtained by conversion of tensile strength based on existing correlation. The results showed that carbon contents, hardness values, yield and ultimate tensile strengths of some of the steel bars were found to be higher than the BS4449, NIS and ASTM A706 standards. The steel bar samples were also found to possess good ductility with samples from steel plants C and D. By observation, all the 12 mm steel bars from steel plants A to H met the required ASTM and BS4449 standards except samples from plant G. This study revealed that most of the investigated reinforcing steel bars have reasonable yield strength, ultimate tensile strength, ductility and hardness properties when compared with the relevant local and international standards. Therefore, they are suitable for structural applications where strength and ductility will be of paramount interestItem Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell(Elsevier, 2020-09-30) Peter Pelumi Ikubanni; Makanjuola Oki; Adekunle Akanni Adeleke; Adediran, A.A; O.S. AdesinaThis study investigated the characteristics of raw palm kernel shell (raw PKS) and the influence of temperature variation on palm kernel shell ash (PKSA). The PKSA was obtained under different temperature regimes of 900, 1000, and 1100°C. The characterization of the samples was carried out using X-ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) with attached Energy Dispersive X-ray (EDX) facilities. The results showed that moisture and ash contents and the density of raw PKS were 6.56%, 8.86%, and 745 kg/m3, respectively. The colour of the pulverized PKS was dark brown, as observed by visual examination based on standard colour gradation. This colour transformed into various shades of brown when PKS was subjected to different temperature regimes to form PKSA. The XRF analysis showed that silica is the main constituent of the raw PKS and PKSA samples. Silica content in the PKSA increased with the rise in the heating temperature. The FTIR and EDX spectra confirmed the predominance of silicon compounds with functional groups associated with silanol and siloxane. Also, XRD analysis revealed that the silica contents in the samples are quartz, while SEM examinations indicated that temperature increases during processing influenced the microstructure through the reduction of pore concentration in the samples. The silica obtained from the PKSA would find applications in metal matrix composites as partial reinforcing materials.