Faculty of Engineering
Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/14
Browse
2 results
Search Results
Item Mechanical Properties Improvement Evaluation of Medium Carbon Steels Quenched in Different Media(Trans Tech Publications,, 2017-09-12) Peter Pelumi Ikubanni; Adediran, A.A; Adekunle Akanni Adeleke; Ajao, K.R.; Agboola, O.O.The effect of quenching on the mechanical properties of medium carbon steels using coconut (CW) water, pap water (PW) and spent engine oil (SPE) which have been largely considered as wastes was investigated. All specimens were normalized at a temperature of 840 in order to remove residual stresses induced during machining operations. Various specimens were heated to ranges of 730-790 and soaked for the range of 30-60 minutes respectively. Brinnel hardness tester was used to obtain the hardness values while Testometric M500-50AT model machine was used for the tensile test of the specimens. The highest hardness value (609.97 BHN) was obtained from the specimen heated to 790 quenched in pap water as compared with 166.4 BHN for the normalized as-received sample. The yield (YS) and ultimate tensile (UTS) strengths of the quenched specimens were better than the normalized as-received sample. SPE-quenched samples yielded the highest YS and UTS combined. The hardness value increased while YS and UTS decreased with soaking time for different temperatures. The highest hardness value for the specimens was obtained from coconut and pap water. Rather than been considered as wastes, coconut water, pap water and spent engine oil can improve the mechanical properties of medium carbon steel when used as quenching media.Item Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell(Elsevier, 2020-09-30) Peter Pelumi Ikubanni; Makanjuola Oki; Adekunle Akanni Adeleke; Adediran, A.A; O.S. AdesinaThis study investigated the characteristics of raw palm kernel shell (raw PKS) and the influence of temperature variation on palm kernel shell ash (PKSA). The PKSA was obtained under different temperature regimes of 900, 1000, and 1100°C. The characterization of the samples was carried out using X-ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) with attached Energy Dispersive X-ray (EDX) facilities. The results showed that moisture and ash contents and the density of raw PKS were 6.56%, 8.86%, and 745 kg/m3, respectively. The colour of the pulverized PKS was dark brown, as observed by visual examination based on standard colour gradation. This colour transformed into various shades of brown when PKS was subjected to different temperature regimes to form PKSA. The XRF analysis showed that silica is the main constituent of the raw PKS and PKSA samples. Silica content in the PKSA increased with the rise in the heating temperature. The FTIR and EDX spectra confirmed the predominance of silicon compounds with functional groups associated with silanol and siloxane. Also, XRD analysis revealed that the silica contents in the samples are quartz, while SEM examinations indicated that temperature increases during processing influenced the microstructure through the reduction of pore concentration in the samples. The silica obtained from the PKSA would find applications in metal matrix composites as partial reinforcing materials.