Department of Petroleum & Gas

Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/56

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Evaluation of Cd(II) Ion Removal from Aqueous Solution by a Low-Cost Adsorbent Prepared from White Yam (Dioscorea rotundata) Waste Using Batch Sorption
    (ChemEngineering, 2018-08-03) Edidiong Asuquo; Alastair D. Martin; Petrus Nzerem
    An agricultural residue, white yam (Dioscorea rotundata) tuber peel (YTBS), was used for the removal of Cd(II) ion from an aqueous solution using a batch method. The adsorbent was characterized using FTIR, TGA, SEM, EDX, N2 BET, XRD, and XRF. The optimization of sorption variables such as pH, contact time, adsorbent dose, and initial metal ion concentration at 25 °C were also carried out. The results indicated the dependence of sorption on the adsorbate pH and adsorbent dose, while the adsorption system reached equilibrium in 180 min. The sorption kinetics was fitted to three models (pseudo first order, pseudo second order, and Elovich) to validate the kinetics, and the pseudo first order was the best model for the description of Cd(II) uptake. Equilibrium isotherm modelling was also carried out using the Langmuir, Freundlich, and Temkin models, with the Langmuir isotherm giving the best fitting to the experimental results. The maximum loading capacity (qmax) of the adsorbent for Cd(II) obtained from the Langmuir isotherm model was 22.4 mg∙g−1 with an isotherm constant (KL) of 3.46 × 10−3 L·mg−1 and r2 value of 0.99. This result indicates that the YTBS residue was a good adsorbent for the removal of Cd(II) ion from aqueous system.
  • Item
    Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies
    (Lancaster E-Prints, 2017-02-23) Asuquo, Edidiong D.; Martin, Alastair Douglas; Petrus Nzerem; Siperstein, Flor; Fan, Xiaolei
    In this study, cadmium and lead ions removal from aqueous solutions using a commercial activated carbon adsorbent (CGAC) were investigated under batch conditions. The adsorbent was observed to have a coarse surface with crevices, high resistance to attrition, high surface area and pore volume with bimodal pore size distribution which indicates that the material was mesoporous. Sorption kinetics for Cd(II) and Pb(II) ions proceeded through a two-stage kinetic profile-initial quick uptake occurring within 30 min followed by a gradual removal of the two metal ions until 180 min with optimum uptake (qe,exp) of 17.23 mg g1 and 16.84 mg g1 for Cd(II) and Pb(II) ions respectively. Modelling of sorption kinetics indicates that the pseudo first order (PFO) model described the sorption of Pb(II) ion better than Cd(II), while the reverse was observed with respect to the pseudo second order (PSO) model. Intraparticle diffusion modelling showed that intraparticle diffusion may not be the only mechanism that influenced the rate of ions uptake. Isotherm modelling was carried out and the results indicated that the Langmuir and Freundlich models described the uptake of Pb(II) ion better than Cd(II) ion. A comparison of the two models indicated that the Langmuir isotherm is the better isotherm for the description of Cd(II) and Pb(II) ions sorption by the adsorbent. The maximum loading capacity (qmax) obtained from the Langmuir isotherm was 27.3 mg g1 and 20.3 mg g1 for Cd(II) and Pb(II) ions respectively.