Department of Petroleum & Gas

Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/56

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Well Placement Optimization Using Simulated Annealing and Genetic Algorithm
    (Society of Petroleum Engineers SPE, 2019-07-31) Aisha Diggi Tukur; Alonge Oluwaseun; Oghenerume Ogolo; Petrus Nzerem; Nhoyidi Nsan; Ikechukwu Okafor ; Abdullahi Gimba; Okafor Andrew
    The general success ratio of wells drilled lies at 1:4, which highlights the difficulty in properly ascertaining sweetspots. well placement location selection is one of the most important processes to ensure optimal recovery of hydrocarbons. Conventionally, a subjective decision is based on the visualization of the HUPHISO (a product of net-to-gross, porosity and oil saturation) map. While this approach identifies regions of high HUPHISO regarded as sweetspots in the reservoir; it lacks consideration for neighbouring regions of the sweetspot. This sometimes lead to placement of wells in a sweetspot but near an adjoining aquifer; giving rise to early water breakthrough - low hydrocarbon recovery. Recently, heuristic optimization techniques. Genetic algorithm (GA) and simulated annealing (SA) has received attention as methods of selection of well-placement locations. This project developed and implemented GA and SA well-placement algorithms and compared the reservoir performance outputs to that of conventional method. Firstly, a reservoir performance model was built using a reservoir flow simulator. In the base case, the wells were placed based on a subjective selection of gridblocks upon the visualization of the HUPHISO map. Thereafter, JAVA routines of GA and SA well-placement algorithms were developed. The numeric data (ASCII format) underlying the map were then exported to the routines. Finally, the performance model was updated with new well locations as selected based on the GA and SA-based approach and the results were compared to the base case. The Comparison of the results showed that both GA and SA-based approach resulted to an increased recovery and time before water breakthrough.
  • Item
    A Comparative Analysis of the Well Performance of Vertical, Horizontal and Multilateral Well
    (Petroleum and Coal, 2019) Ameena A. Gaji; Petrus Nzerem; Oghenerume Ogolo; Ikechukwu Okafor ; Ternenge Joseph Chior
    The demand for energy in the world has been ever increasing. Conventional technologies are being replaced gradually by different new technologies. Horizontal wells and multilateral wells have proved to be highly beneficial by improving production rates significantly. This study focuses on investigating the well performance of vertical well (Well V), horizontal well (Well H), and multilateral well (Well M) in the Hurricane field using PROSPER software. PVT matching, well modelling and well performance analysis was carried out. Sensitivity analysis was performed on key parameters such as tubing diameter, water cut, wellhead pressure and tubing roughness to determine their effects on well productivity. It was observed that increasing the water cut decreased the production rates of Well V, Well H and Well M by 41%, 36.1% and 33.5% respectively. An increase in the tubing diameter improved the production rates, wellhead pressure had high impacts on the well performance while tubing roughness had a minimal effect on oil production. The optimum production rates of 21,622.5 STB/day, 28,653.6 STB/day and 29,800.9 STB/day for Well V, Well H and Well M respectively were achieved at reservoir pressure of 3500 psig, wellhead pressure of 400 psig, water cut of 5% and a 5.5 inches tubing diameter.