Department of Petroleum & Gas
Permanent URI for this communityhttps://repository.nileuniversity.edu.ng/handle/123456789/56
Browse
Item Analysis of Selected Fiber-Rich Agricultural Waste as Water-Based Drilling Mud Fluid Loss Control Additives(NJEAS, 2024-04-09) Blessing Alade; Petrus Nzerem; Ayuba Salihu; Oghenerume Ogolo; Ajiri OtedhekeFor a drilling operation to be successful, the drilling fluid performance must be optimized. This research study the use of degradable agricultural waste namely cowpea skin powder (CSP), sugarcane rind powder (SRP) and yam bark powder (YP) as additives for fluid loss control. The elemental composition of these food wastes was determined using SEM. Proximate analysis was performed to investigate the content of moisture, ash, nitrogen, protein, volatile matter, fixed carbon, bulk density, specific gravity and pH. The local additives were used at 1% (5grams), 3% (10grams), 4% (15grams) and 5% (20grams) each. For CSP fluid loss increased at 5g and 10g (1% and 3%), by 14% and 9% respectively, at 15g and 10.6g, fluid loss decreased by 33% and 36% respectively. Using SRP of 5g increased fluid loss by 12% but there was decrease in fluid loss with 10g, 15g and 2g in these percentages; 14%, 33% and 37% respectively. YP resulted in fluid loss at 5g giving 1.5% loss, 12% loss with 10grams, 16% fluid loss with 15 grams and 33% filtrate loss with 20grams. Overall, SRP showed best fluid loss performance with 20grams (5%), resulting in 37% fluid loss decrease followed by Yam bark powder at 20grams with fluid loss performance of 33%. The least performance was by CSP at 5grams (3%) that increased the filtrate loss by 14%.Item Performance Analysis of Cowpea Skin, Sugar Cane Rind and Yam Bark as Additives in Water-Based Drilling Mud(International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS) Authors:, 2023-11-01) Petrus Nzerem; Oghenerume Ogolo; Blessing O. Alade; Ajiri Otedheke; Ayuba Salihu; Jakada K.Drilling operations require the use of drilling fluid with optimum characteristics. Desired drilling fluid properties is typically controlled using additives. Due to the environmental and safety impact of synthetic additives, this research investigated the use of degradable food waste namely cowpea skin powder (CSP), sugarcane rind powder (SRP) and yam bark powder (YP) as additives in water-based drilling mud. To check the potential of these biodegradable food waste as additives, their elemental composition and approximate composition were ascertained using Scanning electron microscope with energy dispersive x-ray spectroscopy (SEM EDS) and proximate analysis. The method used included the collection, cleaning, drying and grinding each of the food waste (sugarcane rind, cowpea skin and yam bark) into powdered form of 200 microns, performance evaluation of the additives was done in the concentration of 1% (5grams), 3% (10grams), 4% (15grams) and 5% (20grams) each for each API standard laboratory batch of mud. All three powders were confirmed to have significant fiber, carbon, oxygen and hydrogen content, enough to affect fluid loss and filtration control. Significant effect was observed in pH, Plastic viscosity, Yield point, Gel strength and cake thickness. The organic additives tested had no significant effect on mud density and specific gravity.Item Performance Evaluation of Nanocellulose Synthesised from Yam Peels as a Fluid Loss Additive in Water Based Mud(Society of Petroleum Engineers, 2023-07-30) Khadijah Ibrahim; Petrus Nzerem; Ayuba Salihu; Abdullahi Gimba; Oghenerume Ogolo; Ajiri Otedheke; Rabiatu Adamu; Aisha KarofiDrilling fluids play a variety of roles in order to achieve a smooth and cost-effective drilling operation, the most important of which is their ability to seal permeable walls of the formation through the formation of a desirable mud cake, thereby reducing fluid loss. This study is targeted at evaluating the performance of nano cellulose, cellulose microfibrils synthesised from yam peels as a fluid loss additive and also its effect on the other properties of the drilling mud. The use of nano-cellulose is due to smaller particles forming better impermeable packing that will plug the permeable pore of the mud cake, as well as its ability to hold water. The nano cellulose was synthesised using bleaching, alkali treatment, and acid hydrolysis, and its quality was assessed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy, which confirmed the removal of some non-cellulose components as well as changes in surface morphology. The results of the experiment revealed that nano cellulose had an effect on the pH, rheological properties, and filtration properties of the drilling mud. The results also show that adding 1.5 g of nanocellulose reduced fluid loss by 8.13 %, and thus it can be concluded that yam peels nanocellulose will be an effective additive at higher concentrations compared to the Carboxyl Methyl Cellulose, a commercial additive.