Research Articles in Petroleum & Gas

Permanent URI for this collectionhttps://repository.nileuniversity.edu.ng/handle/123456789/57

Browse

Search Results

Now showing 1 - 10 of 39
  • Item
    Evaluation of Cd(II) Ion Removal from Aqueous Solution by a Low-Cost Adsorbent Prepared from White Yam (Dioscorea rotundata) Waste Using Batch Sorption
    (ChemEngineering, 2018-08-03) Edidiong Asuquo; Alastair D. Martin; Petrus Nzerem
    An agricultural residue, white yam (Dioscorea rotundata) tuber peel (YTBS), was used for the removal of Cd(II) ion from an aqueous solution using a batch method. The adsorbent was characterized using FTIR, TGA, SEM, EDX, N2 BET, XRD, and XRF. The optimization of sorption variables such as pH, contact time, adsorbent dose, and initial metal ion concentration at 25 °C were also carried out. The results indicated the dependence of sorption on the adsorbate pH and adsorbent dose, while the adsorption system reached equilibrium in 180 min. The sorption kinetics was fitted to three models (pseudo first order, pseudo second order, and Elovich) to validate the kinetics, and the pseudo first order was the best model for the description of Cd(II) uptake. Equilibrium isotherm modelling was also carried out using the Langmuir, Freundlich, and Temkin models, with the Langmuir isotherm giving the best fitting to the experimental results. The maximum loading capacity (qmax) of the adsorbent for Cd(II) obtained from the Langmuir isotherm model was 22.4 mg∙g−1 with an isotherm constant (KL) of 3.46 × 10−3 L·mg−1 and r2 value of 0.99. This result indicates that the YTBS residue was a good adsorbent for the removal of Cd(II) ion from aqueous system.
  • Item
    Assessing the Impact of Deep Offshore and Inland Basin Production Sharing Contract Ammendments on the Economics of Deep Offshore E&P Assets in Nigeria
    (Society of Petroleum Engineers, 2020-08-04) Oghenerume Ogolo; Omowumi Iledare; Petrus Nzerem; Ikechukwu Okafor ; Emeka Iloegbunam; Isaac P. Ekeoma
    Nigeria recently amended the Deep Offshore and Inland Basins Act. The Act seeks to generate aditional annual revenue of over $1 billion for the government. The 2019 Law seems attractive to the government in the short run in terms of early rent extraction; on one hand, the seeminglly attractiveness of the fiscal terms in the Ammended Act, which is to expand output from investment in Nigeria deep offshore in the country is conjectural. The purpose of this paper is to evaluate the impact of the amendments to the PSC Act on value creation and addition to stake holders using systems and economic metrics that include investment earning power and discounted government take. A designed petroleum economic modeling framework applied to the fiscal terms in the new Act show a significant decrease in value addition to contractor portfolio of assets by about 25% but increases government discounted take statistics from 63.70% to 72.64% in comparison to the fiscal and contract terms in PSC 1993. The IRR and FLI obtained using the terms in the new Act were 23.66% and 0.043, respectively.
  • Item
    Production of Biodiesel from Waste Cooking Oil by Transesterification Process using Heterogeneous Catalyst
    (NIJEST, 2021-12-07) Ayuba Salihu; Mahmood A. A.; Gimba S. B.; Petrus Nzerem; Ikechukwu Okafor
    Non-renewable diesel from fossil has been considered as potentially carcinogenic with serious harmful effect to human health and to the environment. This study aimed to produce a renewable diesel –biodiesel- via transesterification of waste cooking oil (WCO), investigated and determined the most suitable amongst various types of heterogenous catalysts (viz a viz KOH/CaCO3, KOH/CaO and KOH/K2CO3). The chemical and physical characterisation of the biodiesel was been carried out. Among the catalysts investigated, KOH/CaCO3 catalyst showed the best catalytic performance in terms of % yield and better fuel quality in density, acid value, viscosity and free fatty acid. The reason for this performance may be due to its most basic characteristic than the others. As a result, this catalyst was selected for the optimisation study. At the optimum reaction conditions of 10 wt% catalyst loading and 1:10 oil to methanol feed mole ratio, triglycerides conversion was highest, 98.12%. The characterisation results shows that the parameters tested (i.e. density, viscosity, acid value and free fatty acid) meet the strict requirements of the biodiesel standard and therefore, the produced fuel can be used in place of the petrol diesel.
  • Item
    Comprehensive Characterization of Some Selected Biomass for Bioenergy Production
    (ACS Omega, 2023-11-08) Asmau M. Yahya; Adekunle Akanni Adeleke; Petrus Nzerem; Peter Pelumi Ikubanni; Salihu Ayuba; Hauwa A. Rasheed; Abdullahi Gimba; Ikechukwu Okafor; Jude A. Okolie; Prabhu Paramasivam
    There is a lack of information about the detailed characterization of biomass of Nigerian origin. This study presents a comprehensive characterization of six biomass, groundnut shells, corncob, cashew leaves, Ixora coccinea (flame of the woods), sawdust, and lemongrass, to aid appropriate selection for bio-oil production. The proximate, ultimate, calorific value and compositional analyses were carried out following the American Standard for Testing and Materials (ASTM) standards. Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and X-ray fluorescence were employed in this study for functional group analyses, thermal stability, and structural analyses. The H/C and O/C atomic ratios, fuel ratio, ignitability index, and combustibility index of the biomass samples were evaluated. Groundnut shells, cashew leaves, and lemongrass were identified as promising feedstocks for bio-oil production based on their calorific values (>20 MJ/kg). Sawdust exhibited favorable characteristics for bio-oil production as indicated by its higher volatile matter (79.28%), low ash content (1.53%), low moisture content (6.18%), and high fixed carbon content (13.01%). Also, all samples showed favorable ignition and flammability properties. The low nitrogen (<0.12%) and sulfur (<0.04%) contents in the samples make them environmentally benign fuels as a lower percentage of NOx and SOx will be released during the production of the bio-oil. These results are contributions to the advancement of a sustainable and efficient carbon-neutral energy mix, promoting biomass resource utilization for the generation of energy.
  • Item
    Well Placement Optimization Using Simulated Annealing and Genetic Algorithm
    (Society of Petroleum Engineers SPE, 2019-07-31) Aisha Diggi Tukur; Alonge Oluwaseun; Oghenerume Ogolo; Petrus Nzerem; Nhoyidi Nsan; Ikechukwu Okafor ; Abdullahi Gimba; Okafor Andrew
    The general success ratio of wells drilled lies at 1:4, which highlights the difficulty in properly ascertaining sweetspots. well placement location selection is one of the most important processes to ensure optimal recovery of hydrocarbons. Conventionally, a subjective decision is based on the visualization of the HUPHISO (a product of net-to-gross, porosity and oil saturation) map. While this approach identifies regions of high HUPHISO regarded as sweetspots in the reservoir; it lacks consideration for neighbouring regions of the sweetspot. This sometimes lead to placement of wells in a sweetspot but near an adjoining aquifer; giving rise to early water breakthrough - low hydrocarbon recovery. Recently, heuristic optimization techniques. Genetic algorithm (GA) and simulated annealing (SA) has received attention as methods of selection of well-placement locations. This project developed and implemented GA and SA well-placement algorithms and compared the reservoir performance outputs to that of conventional method. Firstly, a reservoir performance model was built using a reservoir flow simulator. In the base case, the wells were placed based on a subjective selection of gridblocks upon the visualization of the HUPHISO map. Thereafter, JAVA routines of GA and SA well-placement algorithms were developed. The numeric data (ASCII format) underlying the map were then exported to the routines. Finally, the performance model was updated with new well locations as selected based on the GA and SA-based approach and the results were compared to the base case. The Comparison of the results showed that both GA and SA-based approach resulted to an increased recovery and time before water breakthrough.
  • Item
    Absorption, Diffraction and Free Space Path Losses Modeling for the Terahertz Band
    (MECS, 2020-08-18) Petrus Nzerem; Oyeleke D. Oluseun; Idris Muhammad; Sadiq Thomas; Olabode Idowu-Bismark
    With the explosive increase in the data traffic of wireless communication systems and the scarcity of spectrum, terahertz (THz) frequency band is predicted as a hopeful contender to shore up ultra- broadband for the forthcoming beyond fifth generation (5G) communication system. THz frequency band is a bridge between millimeter wave (mmWave) and optical frequency bands. The contribution of this paper is to carry out an in-depth study of the THz channel impairments using mathematical models to evaluate the requirements for designing indoor THz communication systems at 300GHz. Atmospheric absorption loss, diffraction loss and free space path loss were investigated and modeled. Finally, we discuss several potential application scenarios of THz and the essential technical challenges that will be encountered in the future THz communications. Finally, the article finds that propagating in the THz spectrum is strongly dependent on antenna gain.
  • Item
    Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies
    (Lancaster E-Prints, 2017-02-23) Asuquo, Edidiong D.; Martin, Alastair Douglas; Petrus Nzerem; Siperstein, Flor; Fan, Xiaolei
    In this study, cadmium and lead ions removal from aqueous solutions using a commercial activated carbon adsorbent (CGAC) were investigated under batch conditions. The adsorbent was observed to have a coarse surface with crevices, high resistance to attrition, high surface area and pore volume with bimodal pore size distribution which indicates that the material was mesoporous. Sorption kinetics for Cd(II) and Pb(II) ions proceeded through a two-stage kinetic profile-initial quick uptake occurring within 30 min followed by a gradual removal of the two metal ions until 180 min with optimum uptake (qe,exp) of 17.23 mg g1 and 16.84 mg g1 for Cd(II) and Pb(II) ions respectively. Modelling of sorption kinetics indicates that the pseudo first order (PFO) model described the sorption of Pb(II) ion better than Cd(II), while the reverse was observed with respect to the pseudo second order (PSO) model. Intraparticle diffusion modelling showed that intraparticle diffusion may not be the only mechanism that influenced the rate of ions uptake. Isotherm modelling was carried out and the results indicated that the Langmuir and Freundlich models described the uptake of Pb(II) ion better than Cd(II) ion. A comparison of the two models indicated that the Langmuir isotherm is the better isotherm for the description of Cd(II) and Pb(II) ions sorption by the adsorbent. The maximum loading capacity (qmax) obtained from the Langmuir isotherm was 27.3 mg g1 and 20.3 mg g1 for Cd(II) and Pb(II) ions respectively.
  • Item
    Defining the Optimal Development Strategy to Maximize Recovery and Production Rate from an Integrated Offshore Water-Flood Project
    (Society of Petroleum Engineers, 2019-07-31) Hajara Kabeer Abdulfatah; Ikechukwu Okafor; Petrus Nzerem; Khaleel Jakada
    A reservoir development plan provides the necessary guidance and information for establishing whether or not a project is economically viable considering possible development project options, risks and uncertainties in order to define the most optimal development concept that will increase oil production and reduce production costs. The aim of this project was to determine the optimum way to develop and produce an offshore oil field in a manner that considers risks and uncertainties and values stakeholders’ interest. A stochastic multi-tank reservoir model was created using MBAL and it consist of various producers and water injection wells. Sensitivity analysis was carried out on Seven development scenarios with a view to examine effect of maintaining reservoir pressure, sustaining well productivity and injectivity, optimize well counts and improving well delivery- timing, cost and well performance. The economic viability of each of the development scenarios was carried out to determine the net present value, incremental project cash flow, unit technical cost, unit development cost and breakeven price BEP of each of the scenarios. The optimal development strategy was then selected based on the production performance and key economic indicators. The project provided an opportunity to develop an additional 396MMbbls of recoverable oil from 32 new wells both producers and injector wells (P+WI).
  • Item
    Human Detection For Crowd Count Estimation Using CSI of WiFi Signals
    (International Conference on Electronics Computer and Computation (ICECCO), 2019-12-01) Omotayo Oshiga; Hussein U. Suleiman; Sadiq Thomas; Petrus Nzerem; Labaran Farouk; Steve Adeshina
    We address the problem of crowd estimation in situations such as indoor events using anonymous and non-participatory CSI of WiFi Signals. Observing the great resemblance of Channel State Information (CSI, a finegrained information captured from the received Wi-Fi signal) to texture, we propose a brand-new framework based on statistical mechanics, and relying only on sets of machine learning techniques.In this paper, a framework for crowd count estimation is presented which utilizes Chebyshev filter and SVD to remove background noise in the CSI data, PCA to reduce the dimensionality of the CSI data and spectral descriptors for feature extraction. From the extracted feature, a set of classiffying algorithms are then utilised for training and testing the accuracy of our crowd estimation framework The aim of this framework to effectively and efficiently extract the channel information in WiFi signals across OFDM carriers reflected by the presence of human bodies. From the experiments conducted, we demonstrate the feasibility and efficacy of the proposed framework. Our result depict that our estimation becomes more–rather than less–accurate when the crowd count increases.
  • Item
    Comparative studies of machine learning models for predicting higher heating values of biomass
    (Institution of Chemical Engineers (IChemE), 2024-06-29) Adekunle Akanni Adeleke; Adeyinka Adedigba; Steve Adeshina; Peter Pelumi Ikubanni; Mohammed S. Lawal; Adebayo Isaac Olosho; Halima S. Yakubu; Temitayo Samson Ogedengbe; Petrus Nzerem; Jude A. Okolie
    This study addresses the challenge of efficiently determining the higher heating value (HHV) of biomass, a crucial parameter in large-scale biomass-based energy systems. The conventional method of measuring HHV using an oxygen bomb calorimeter is time-consuming, expensive, and less accessible to researchers, particularly in developing nations. To overcome these limitations, we employed four machine learning (ML) models, namely Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). These models were developed by using proximate and ultimate analysis parameters as input features. Up to 200 datasets were compiled from literature and used for the ML models. Our results demonstrate the effectiveness of all ML models in accurately predicting the HHV of biomass materials. Notably, the XGBoost model exhibited superior performance with the highest R-squared (R2) values for both training (0.9683) and test datasets (0.7309), along with the lowest root mean squared error (RSME) of 0.3558. Key influential input features identified for HHV prediction include carbon (C), volatile matter (Vm), ash, and hydrogen (H). Consequently, this research provides a reliable alternative for predicting HHV without the need for costly and time-intensive experimental measurements, facilitating broader accessibility in biomass energy research.