Research Articles in Petroleum & Gas
Permanent URI for this collectionhttps://repository.nileuniversity.edu.ng/handle/123456789/57
Browse
16 results
Search Results
Item Evaluation of the Potential of Calcium Hydroxide Synthesized from Eggshells as a Drilling Fluid Additive(Petroleum and Coal, 2020-01-09) Abdullahi Gimba; Shalom Onome Amakhabi; Oghenerume Ogolo; Oluwaseun Alonge; Nzerem Petrus; Ikechukwu Okafor; David AfolayanThis research work studied the suitability of Ca(OH)2 synthesized from eggshell as a drilling fluid additive. Ca(OH)2 was synthesized from calcined eggshells (CES) and uncalcined eggshells (UCES) and characterized using FTIR and EDX. Samples of one laboratory barrel of water-based mud were prepared using bentonite clay from Afuze, Edo State, Nigeria, and the synthesized Ca(OH)2 produced from CES and UCES and commercial Ca(OH)2 were added to different mud samples prepared, and its effect on the mud properties were tested for. The results obtained from the experiment conducted showed that the synthesized Ca(OH)2 gave comparable pH values as the commercial Ca(OH)2. Hence it served primarily as a pH enhancer. However, the addition of Ca(OH)2 from both sources increased the filtrate volume and mud cake thickness far beyond API standard which might create wellbore problems due to the high filtrate loss and mud cake thickness that were observed.Item Comprehensive Characterization of Some Selected Biomass for Bioenergy Production(ACS Omega, 2023-11-08) Asmau M. Yahya; Adekunle Akanni Adeleke; Petrus Nzerem; Peter Pelumi Ikubanni; Salihu Ayuba; Hauwa A. Rasheed; Abdullahi Gimba; Ikechukwu Okafor; Jude A. Okolie; Prabhu ParamasivamThere is a lack of information about the detailed characterization of biomass of Nigerian origin. This study presents a comprehensive characterization of six biomass, groundnut shells, corncob, cashew leaves, Ixora coccinea (flame of the woods), sawdust, and lemongrass, to aid appropriate selection for bio-oil production. The proximate, ultimate, calorific value and compositional analyses were carried out following the American Standard for Testing and Materials (ASTM) standards. Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and X-ray fluorescence were employed in this study for functional group analyses, thermal stability, and structural analyses. The H/C and O/C atomic ratios, fuel ratio, ignitability index, and combustibility index of the biomass samples were evaluated. Groundnut shells, cashew leaves, and lemongrass were identified as promising feedstocks for bio-oil production based on their calorific values (>20 MJ/kg). Sawdust exhibited favorable characteristics for bio-oil production as indicated by its higher volatile matter (79.28%), low ash content (1.53%), low moisture content (6.18%), and high fixed carbon content (13.01%). Also, all samples showed favorable ignition and flammability properties. The low nitrogen (<0.12%) and sulfur (<0.04%) contents in the samples make them environmentally benign fuels as a lower percentage of NOx and SOx will be released during the production of the bio-oil. These results are contributions to the advancement of a sustainable and efficient carbon-neutral energy mix, promoting biomass resource utilization for the generation of energy.Item Well Placement Optimization Using Simulated Annealing and Genetic Algorithm(Society of Petroleum Engineers SPE, 2019-07-31) Aisha Diggi Tukur; Alonge Oluwaseun; Oghenerume Ogolo; Petrus Nzerem; Nhoyidi Nsan; Ikechukwu Okafor ; Abdullahi Gimba; Okafor AndrewThe general success ratio of wells drilled lies at 1:4, which highlights the difficulty in properly ascertaining sweetspots. well placement location selection is one of the most important processes to ensure optimal recovery of hydrocarbons. Conventionally, a subjective decision is based on the visualization of the HUPHISO (a product of net-to-gross, porosity and oil saturation) map. While this approach identifies regions of high HUPHISO regarded as sweetspots in the reservoir; it lacks consideration for neighbouring regions of the sweetspot. This sometimes lead to placement of wells in a sweetspot but near an adjoining aquifer; giving rise to early water breakthrough - low hydrocarbon recovery. Recently, heuristic optimization techniques. Genetic algorithm (GA) and simulated annealing (SA) has received attention as methods of selection of well-placement locations. This project developed and implemented GA and SA well-placement algorithms and compared the reservoir performance outputs to that of conventional method. Firstly, a reservoir performance model was built using a reservoir flow simulator. In the base case, the wells were placed based on a subjective selection of gridblocks upon the visualization of the HUPHISO map. Thereafter, JAVA routines of GA and SA well-placement algorithms were developed. The numeric data (ASCII format) underlying the map were then exported to the routines. Finally, the performance model was updated with new well locations as selected based on the GA and SA-based approach and the results were compared to the base case. The Comparison of the results showed that both GA and SA-based approach resulted to an increased recovery and time before water breakthrough.Item Study of the Potential of Sodium Carbonate Extracted from Trona as a Drilling Fluid Additive(International Journal of Engineering Research in Africa, 2020-06-30) Petrus Nzerem; Enyo June Adejoh; Oghenerume Ogolo; Ikechukwu Okafor; Abdullahi Gimba; Ternenge Joseph Chior; Precious OgbeiwiDrilling additives play a unique role during drilling operations, from aiding in the control of various drilling challenges to successfully enhancing downhole drilling efficiency. pH enhancers are amongst the plethora of additives imported into Nigeria at exorbitant prices to aid in drilling operations. These additives includes NaOH, Na2CO3, Ca(OH)2 etc. These additives are used to improve the mud pH and mitigates drill string corrosion. The high cost of importation of these additives, has warranted the need for product substitution which should take advantage of the locally available resources. This paper evaluated the suitability of locally-sourced Trona, as a mud additive in drilling mud. Trona is known chemically as Sodium Sesquicarbonate or Sodium Hydrogen Carbonate. A distinguishing factor in this research work was the purification of Trona by extracting the compound of interest (Na2CO3) from it using the monohydrate process. The purification method involved crushing and screening of Trona as well as calcination, filtration and evaporation processes. The analysis of the Trona and the extracted product was performed using quantitative analysis and characterization tools such as FTIR and EDX. Further experimentation was carried out to evaluate the effects of the extracted sodium carbonate on the mud pH, rheology, and density of the water based mud. The results were also compared to the results gotten from the addition of conventional Na2CO to similar mud samples. The extracted Na2CO was observed to increase the pH of the mud samples from 8.73 to 9.52 and the commercial Na2CO increased it from 8.73 to 10 and this value is still in the range of API standard. The pH enhancers from both sources also had effect on the mud rheological properties. This indeed showed that the extracted Na2CO from Trona acted as drilling fluid pH enhancer and hence possess the potential for usage in the industry.Item Determination of the Optimal Blend Ratio of Hydrogen in Natural Gas System Using Physical Properties as Basis(ICMEAS, 2023-11-01) Ayuba Salihu ; Ikechukwu Okafor; Aniezi Okoro Daniel; Abdullahi Gimba ; Petrus NzeremThe Determination of the optimal blend ratio of hydrogen in natural gas systems using physical properties as a basis is an important research topic given the increasing use of hydrogen as an alternative fuel source. This research aims to determine the optimal blend ratio of hydrogen in a natural gas system using physical properties such as its Composition, Heating Value, Density, and Wobbe index as the basis of evaluation. Samples of consumer-grade Natural gas and clean Hydrogen gas were sourced in Nigeria. Both samples were used for blending and laboratory analysis. The blend volume ratios of Natural Gas (NG) and Hydrogen analyzed were 9:1, 8:2, 7:3, 6:4, & 5:5 using a Gasometer and Gas Chromatography Machine (CG). The experiment results provided valuable insights into the potential feasibility of replacing natural gas systems with a Hydrogen-Natural gas blend. The result obtained indicated about 2.06% reduction in percentage methane content, 26.35% reduction in gas density, 19.97% reduction in heating value (HHV), 5% reduction Wobbe index for every 10% increment of Hydrogen Ratio. This implies that blending carbon-neutral hydrogen gas into the natural gas systems for the purpose of decarbonization requires adequate compensation for expected changes in properties like heating value, flow dynamics, and process handling. The EUROMOT specification recommends that the percentage change in the wobbe index should be within the limit of +4% and -4% as an acceptable limit of interchangeability of fuel gas. Using the EUROMOT specification on Wobbe index, further numerical analysis affirmed that Natural Gas blended with as much as 25.74% Hydrogen can effectively be a substitute for fuel gas systems that are presently using Natural Gas.Item Simulation Study of the Effect of Various Water Alternating Gas Injection Schemes on Recovery in a Gas Condensate Reservoir(Society of Petroleum Engineers (SPE), 2023-07-30) Jakada K.; Abdullahi Gimba; Ikechukwu Okafor ; Petrus Nzerem; Abdulfatah H. K.; Oluogun M.The volatile characteristics of gas condensate reservoirs in the phase envelope makes its temperature and pressure conditions between the critical and cricondentherm points very sensitive to perhaps only rely on one source of reservoir energy enhancement and puts enormous technical constraints on quality decision making on effective reservoir management. Non adequate oil production simulation performance interpretation for high, base and low case scenarios based on critical high quality input data is definitely the technical missing link which severely hampers effective design, development, planning, optimization and prediction of gas condensate reservoir performance. The aim of this study was to evaluate the recovery performance of a rapidly declining reservoir flow rates of a gas condensate reservoir through the water alternating gas (WAG) injection technique using the Schlumberger Eclipse simulator. Five different case scenarios were used which include cases of no-injection wells (which is the control case), gas injection, water injection, water alternating gas (for 7, 5, and 3-spot patterns) and flow rate alterations with a seven spot pattern-WAG technique. A total of 13 simulation runs were done with one control and 12 other runs with high, base and low cases. The sensitized water and gas injection rates used ranges from 12,000STB/day to 2,000STB/day and 12,000MSCF/day to 1,000MSCF/day. All results showed increase in oil flow rates with appreciable pressure response and subsequently, the viable option would be to consider in the short term water and gas injection before considering the more holistic WAG techniques in the long term. This is due to the current economic and technical constraints to boost the viability of the best choice of action. The results of these comprehensive simulation runs is a viable data bank needed for critical decision making for improved recovery from this rapidly declining condensate reservoir.Item Performance Evaluation of Nanocellulose Synthesised from Yam Peels as a Fluid Loss Additive in Water Based Mud(Society of Petroleum Engineers, 2023-07-30) Khadijah Ibrahim; Petrus Nzerem; Ayuba Salihu; Abdullahi Gimba; Oghenerume Ogolo; Ajiri Otedheke; Rabiatu Adamu; Aisha KarofiDrilling fluids play a variety of roles in order to achieve a smooth and cost-effective drilling operation, the most important of which is their ability to seal permeable walls of the formation through the formation of a desirable mud cake, thereby reducing fluid loss. This study is targeted at evaluating the performance of nano cellulose, cellulose microfibrils synthesised from yam peels as a fluid loss additive and also its effect on the other properties of the drilling mud. The use of nano-cellulose is due to smaller particles forming better impermeable packing that will plug the permeable pore of the mud cake, as well as its ability to hold water. The nano cellulose was synthesised using bleaching, alkali treatment, and acid hydrolysis, and its quality was assessed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy, which confirmed the removal of some non-cellulose components as well as changes in surface morphology. The results of the experiment revealed that nano cellulose had an effect on the pH, rheological properties, and filtration properties of the drilling mud. The results also show that adding 1.5 g of nanocellulose reduced fluid loss by 8.13 %, and thus it can be concluded that yam peels nanocellulose will be an effective additive at higher concentrations compared to the Carboxyl Methyl Cellulose, a commercial additive.Item Preparation and Characterization of Different Eco-Friendly Demulsifiers from Calabash Seed for Emulsion Management(Nigerian Journal of Technology, 2024-12-31) Ikechukwu Okafor; Adewumi, C. N.; Jakada K.; Petrus Nzerem; Abdullahi Gimba; Danbauchi S.The process of crude oil demulsification is still confronted with numerous challenges within the petroleum industry. Consequently, it is pertinent to develop innovative means or materials to accomplish the efficient separation of oil– water emulsions. In this work, three different Eco-friendly demulsifier: oil based, ethanol-based and Nano-based demulsifiers were prepared via a simple one-step hydrothermal route using Lagenaria siceraria (calabash) seed as raw materials. The eco-friendly demulsifiers were evaluated by Fourier transform infrared spectroscopy (FT-IR) and Gas chromatographic-mass spectroscopic (GC-MS) and their chemical content and Physico-chemical properties compared with a commercial demulsifier (Phase treat). The results obtained showed that the seed have an oil content of 31%. The phytochemical screening of the extracted oil reveals the presence of most compounds found in chemical demulsifiers such as phenols, flavonoids, tannins, saponins, steroids, terpenoids etc. The FT-IR spectra of the chemical demulsifier was found to be similar to that of the oil and most of the functional groups present in the ethanol and oil bases demulsifiers whereas that of Nano-based was observed to differ. The GC MS analysis reveals the presence of both lipophilic and hydrophilic compound needed for demulsifiers preparation. In the bottle test analysis carried out to determine the efficacy of the eco-friendly demulsifiers, it was observed that the nano-based demulsifier performed better than the commercial demulsifier in the following trend: Nano-based > commercial > ethanol-based > oil-based. This current study not only encourage the effectual application of agricultural waste (Calabash seed) but also creates an understanding into the search of new demulsifying materials that would offer excellent performance. Finally, future investigations should focus on assessing the efficacy, stability, and potential industrial applications of these bio-demulsifiers and Nano-based demulsifiers.Item Application of Pressure Transient Analysis to Gas Material Balance for Multi Rate Production(Society of Petroleum Engineers, 2024-08-05) Ikechukwu Okafor; Ajibade A. A.; Jakada K.; Ternenge Joseph Chior; Abdullahi Gimba; Petrus NzeremA producing field's oil and gas reserves are continually estimated throughout its lifetime. As more data about the reservoir is obtained over time, the uncertainty regarding the actual amount of reserves decreases. Various methods have been employed to determine these reserves, including the Material Balance Technique. The classical method applies the conservation of mass, which has evolved over time. This study aims to further enhance the gas Material Balance Technique by incorporating equations derived from analytical pressure transient analysis with multiple rate production. By combining transient analysis solutions with the linear Material Balance method, this approach offers the advantage of determining the initial gas-in-place, permeability, and skin of a reservoir simultaneously, without relying on independent sources for prior knowledge of any of these parameters. To streamline the process and facilitate analytical deductions, this work also utilizes Python programming for automation. Ultimately, this study develops a series of steps that were applied to a case study, enabling the simultaneous determination of the reservoir's permeability, skin-factor, and initial gas.Item Effect of Raw and Delignified Banana Stem (Musa Cavendish) On the Rheological and Filtration Loss Properties of Water Based Mud(NJEAS, 2023-10-12) Ayuba Salihu; Ahmed Abubakar; Petrus Nzerem; Abdullahi Gimba; Khadijah Ibrahim; Ikechukwu Okafor; Khaleel JakadaIn compliance with environmental laws and safety rules, oil and gas companies have taken necessary steps to eradicate the use of toxic chemicals conventionally used in drilling muds, thereby promoting biodegradable alternatives. This research was carried out to investigate the effect of two banana stem samples; Raw Banana Stem (RBS) and Delignified Banana Stem (DBS) as potential and proficient viscosifiers and fluid loss control agents in water based mud. The rheological properties evaluated include plastic viscosity (cP), apparent viscosity (cP), yield point (Ib/100ft2) and gel strength (Ib/100ft2) at 10 seconds and 10 minutes. Filtration loss properties evaluated include filter cake thickness (mm) and fluid loss volume (ml). Each drilling mud sample was prepared using 350 ml, 20 g bentonite and varying contents (g) of carboxyl methyl cellulose (CMC), RBS and DBS. A mixer was used to mix the mud homogenously; the rheological properties were calculated using a viscometer while the filtration loss properties were calculated using a filter press. The results and analysis were compared to the effects of commercially available carboxymethyl cellulose to validate its properties. RBS and DBS improved the rheological properties of the mud sample contents of 3 g, 5 g, 7 g and 9 g. At contents of 5 g, 10 g, 15 g and 20 g, RBS and DBS samples provide significant fluid loss control and their results are similar to the results of CMC. RBS has a fluid loss volume increase of 6.84 %, 5.69 %, 17.12 % and 8.06 % from CMC’s results at slightly similar filter cake thickness while DBS has a fluid loss volume increase of 15.59 %, 15.09 %, 27.55 % and 15.35 % from CMC’s result. The data obtained from the experiments showed both banana samples can be used as environmentally friendly viscosifiers and fluid loss control agents.