Browsing by Author "Rabiatu Adamu Saleh"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item A Review of Rare Earth Ion-Doped Glasses: Physical, Optical, and Photoluminescence Properties(Trends in Sciences, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. OkolieResearchers worldwide have shown significant interest in doping glasses with rare-earth ions. This is particularly intriguing because rare-earth ions are extensively used to enhance the optical properties of host glasses, capitalizing on their unique spectroscopic characteristics due to optical transitions within the intra-4f shell. An in-depth review was conducted on various glass fabrication methods, such as sputtering, solgel, chemical vapor deposition, ion exchange, and direct melt quenching. The study emphasized the physical, optical, and photoluminescence properties of glasses made from glass formers co-doped with rare earth ions. Understanding the interrelationship between these properties is crucial for optimizing material performance across various technological applications. The research highlights the broad applicability of rare-earth-doped glasses in fields like white light emission, photonic devices, solid-state lasers, optical fiber communication, and biomedical applicationsItem A Review of the Physical, Optical and Photoluminescence Properties of Rare Earth Ions Doped Glasses(TRENDS IN SCIENCES, 2024-10-22) Serifat Olamide Adeleye; Adekunle Akanni Adeleke; Petrus Nzerem; Adebayo Isaac Olosho; Esther Nneka Anosike-Francis; Temitayo Samson Ogedengbe; Peter Pelumi Ikubanni; Rabiatu Adamu Saleh; Jude A. OkolieDoping glasses with rare-earth ions have garnered significant attention among researchers worldwide. This interest stems from the widespread utilization of rare-earth ions to enhance the optical characteristics of host glasses and exploit the unique spectroscopic properties arising from their optical transitions in the intra-4f shell. Thus, this study reviewed the exceptional potential of rare-earth ion-doped glasses (REIs) in various applications such as solid-state lasers, photonic devices, communication optical fibers, and white light emission. Various methods for the fabrication of glass such as direct melt quenching, sol-gel, ion exchange, sputtering and co-doping techniques were reviewed extensively. The Specific focus was on the physical, optical and photoluminescence properties of glasses produced from glass formers co-doped with rare earth ions. The investigation centers on the comprehensive current applicability of REI-doped glasses. The review concludes based on the physical, optical and photoluminescence properties of rare earth ion-doped glasses that they are extremely useful in photonics, lasers, biomedical and optical communication applications.Item A Review on Extraction of Rare Earth Elements (REEs) From Coal Using Acid Leaching(IEEE, 2023-11-01) Rabiatu Adamu Saleh; Abdullahi Gimba; Adekunle Akanni Adeleke; Adebayo Isaac Olosho; Taofeek Sunmonu; Petrus Nzerem; Ayuba Salihu; Chinomso OdimbaCoal has become a feasible source of rare earth elements (REEs; the 14 stable lanthanides, scandium, and yttrium). It is believed to contain significant amounts of rare earth elements, making it a primary source of REEs which serves as basic raw materials in the production of renewable energy. This review established the feasibility of recovering REEs from coal using acid leaching method. It discusses; the sourcing of REEs from coal, the applications of REEs and acid leaching as an effective hydrometallurgical method for extracting REEs from coal. It also examined the efficiency of methods used by other researchers in extracting REEs from coal. However, the potential of acid leaching as a solution to issues such as: difficult leaching conditions, low recovery and the use of expensive chemicals has not been fully investigated. For a better choice in the extraction of REEs from coal, more study and review are necessary.