Repository logo
Communities & Collections
All of NUN
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jakada K."

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Application of Pressure Transient Analysis to Gas Material Balance for Multi Rate Production
    (Society of Petroleum Engineers, 2024-08-05) Ikechukwu Okafor; Ajibade A. A.; Jakada K.; Ternenge Joseph Chior; Abdullahi Gimba; Petrus Nzerem
    A producing field's oil and gas reserves are continually estimated throughout its lifetime. As more data about the reservoir is obtained over time, the uncertainty regarding the actual amount of reserves decreases. Various methods have been employed to determine these reserves, including the Material Balance Technique. The classical method applies the conservation of mass, which has evolved over time. This study aims to further enhance the gas Material Balance Technique by incorporating equations derived from analytical pressure transient analysis with multiple rate production. By combining transient analysis solutions with the linear Material Balance method, this approach offers the advantage of determining the initial gas-in-place, permeability, and skin of a reservoir simultaneously, without relying on independent sources for prior knowledge of any of these parameters. To streamline the process and facilitate analytical deductions, this work also utilizes Python programming for automation. Ultimately, this study develops a series of steps that were applied to a case study, enabling the simultaneous determination of the reservoir's permeability, skin-factor, and initial gas.
  • No Thumbnail Available
    Item
    Performance Analysis of Cowpea Skin, Sugar Cane Rind and Yam Bark as Additives in Water-Based Drilling Mud
    (International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS) Authors:, 2023-11-01) Petrus Nzerem; Oghenerume Ogolo; Blessing O. Alade; Ajiri Otedheke; Ayuba Salihu; Jakada K.
    Drilling operations require the use of drilling fluid with optimum characteristics. Desired drilling fluid properties is typically controlled using additives. Due to the environmental and safety impact of synthetic additives, this research investigated the use of degradable food waste namely cowpea skin powder (CSP), sugarcane rind powder (SRP) and yam bark powder (YP) as additives in water-based drilling mud. To check the potential of these biodegradable food waste as additives, their elemental composition and approximate composition were ascertained using Scanning electron microscope with energy dispersive x-ray spectroscopy (SEM EDS) and proximate analysis. The method used included the collection, cleaning, drying and grinding each of the food waste (sugarcane rind, cowpea skin and yam bark) into powdered form of 200 microns, performance evaluation of the additives was done in the concentration of 1% (5grams), 3% (10grams), 4% (15grams) and 5% (20grams) each for each API standard laboratory batch of mud. All three powders were confirmed to have significant fiber, carbon, oxygen and hydrogen content, enough to affect fluid loss and filtration control. Significant effect was observed in pH, Plastic viscosity, Yield point, Gel strength and cake thickness. The organic additives tested had no significant effect on mud density and specific gravity.
  • No Thumbnail Available
    Item
    Preparation and Characterization of Different Eco-Friendly Demulsifiers from Calabash Seed for Emulsion Management
    (Nigerian Journal of Technology, 2024-12-31) Ikechukwu Okafor; Adewumi, C. N.; Jakada K.; Petrus Nzerem; Abdullahi Gimba; Danbauchi S.
    The process of crude oil demulsification is still confronted with numerous challenges within the petroleum industry. Consequently, it is pertinent to develop innovative means or materials to accomplish the efficient separation of oil– water emulsions. In this work, three different Eco-friendly demulsifier: oil based, ethanol-based and Nano-based demulsifiers were prepared via a simple one-step hydrothermal route using Lagenaria siceraria (calabash) seed as raw materials. The eco-friendly demulsifiers were evaluated by Fourier transform infrared spectroscopy (FT-IR) and Gas chromatographic-mass spectroscopic (GC-MS) and their chemical content and Physico-chemical properties compared with a commercial demulsifier (Phase treat). The results obtained showed that the seed have an oil content of 31%. The phytochemical screening of the extracted oil reveals the presence of most compounds found in chemical demulsifiers such as phenols, flavonoids, tannins, saponins, steroids, terpenoids etc. The FT-IR spectra of the chemical demulsifier was found to be similar to that of the oil and most of the functional groups present in the ethanol and oil bases demulsifiers whereas that of Nano-based was observed to differ. The GC MS analysis reveals the presence of both lipophilic and hydrophilic compound needed for demulsifiers preparation. In the bottle test analysis carried out to determine the efficacy of the eco-friendly demulsifiers, it was observed that the nano-based demulsifier performed better than the commercial demulsifier in the following trend: Nano-based > commercial > ethanol-based > oil-based. This current study not only encourage the effectual application of agricultural waste (Calabash seed) but also creates an understanding into the search of new demulsifying materials that would offer excellent performance. Finally, future investigations should focus on assessing the efficacy, stability, and potential industrial applications of these bio-demulsifiers and Nano-based demulsifiers.
  • No Thumbnail Available
    Item
    Renewable Energy Conversion from Biomass
    (International Conference on Multidisciplinary Engineering and Applied Sciences (ICMEAS-2023), 2023-11-01) Adekunle Akanni Adeleke ; Petrus Nzerem; Ayuba S.; Esther Nneka Anosike-Francis; Peter Pelumi Ikubanni; Adebayo Isaac Olosho; Abdulrasheed Ado; Adeiza Avidime Samuel; Jakada K.
    The global impacts of fossil fuels have driven governments and companies to investigate other methods of energy production for the benefit of society. The utilization of biomass in energy validates the possibility to replace non-renewable sources of energy. Bioenergy is obtained from a wide variety of sources, including rice husks, bagasse, wood chippings, and sawdust. This article presents an examination of the techniques employed in the conversion of biomass into energy that is suitable for practical applications, ecologically friendly and also the rates at which biomass power is consumed worldwide.
  • No Thumbnail Available
    Item
    Simulation Study of the Effect of Various Water Alternating Gas Injection Schemes on Recovery in a Gas Condensate Reservoir
    (Society of Petroleum Engineers (SPE), 2023-07-30) Jakada K.; Abdullahi Gimba; Ikechukwu Okafor ; Petrus Nzerem; Abdulfatah H. K.; Oluogun M.
    The volatile characteristics of gas condensate reservoirs in the phase envelope makes its temperature and pressure conditions between the critical and cricondentherm points very sensitive to perhaps only rely on one source of reservoir energy enhancement and puts enormous technical constraints on quality decision making on effective reservoir management. Non adequate oil production simulation performance interpretation for high, base and low case scenarios based on critical high quality input data is definitely the technical missing link which severely hampers effective design, development, planning, optimization and prediction of gas condensate reservoir performance. The aim of this study was to evaluate the recovery performance of a rapidly declining reservoir flow rates of a gas condensate reservoir through the water alternating gas (WAG) injection technique using the Schlumberger Eclipse simulator. Five different case scenarios were used which include cases of no-injection wells (which is the control case), gas injection, water injection, water alternating gas (for 7, 5, and 3-spot patterns) and flow rate alterations with a seven spot pattern-WAG technique. A total of 13 simulation runs were done with one control and 12 other runs with high, base and low cases. The sensitized water and gas injection rates used ranges from 12,000STB/day to 2,000STB/day and 12,000MSCF/day to 1,000MSCF/day. All results showed increase in oil flow rates with appreciable pressure response and subsequently, the viable option would be to consider in the short term water and gas injection before considering the more holistic WAG techniques in the long term. This is due to the current economic and technical constraints to boost the viability of the best choice of action. The results of these comprehensive simulation runs is a viable data bank needed for critical decision making for improved recovery from this rapidly declining condensate reservoir.

Nile University of Nigeria Copyright @ 2024

  • Send Feedback